Program Code for Radial Wave Function of Hydrogen-like Atoms (specially adapted for very high levels)
/*************************************************************************************
* This subroutine calculates the radial wave functions for a hydrogen-like bound atom.
* It is written in PL/1, but should be easily adaptable to other languages.
*
* It is based on the well known analytical formula
* Ψn,l(ρ)= √(n-l-1)!/√(n+l)!.√Z /n.(2Z.ρ/n)l+1.Ln-l-12l+1(2Z.ρ/n).exp(-Z.ρ/n) ;
*
*
* Input parameters are:
* Z: nuclear charge
* N0: principal quantum number
* L0: angular momentum qunatum number
* R: radial distance (in Bohr radii)
*
* Output parameter is:
* PNL: wave function value
*
*
* Required subroutines:
* LAGUERRE2 (returns the corresponding Laguerre polynomials)
* NUM, MULT (to avoid numerical overflow or underflow for high quantum numbers).
*
*
* This program has worked well and correct for me in the past (using IBM PL/1 compilers),
* but I can't guarantee this for all compilers, especially if the code is translated
* into a different language.
*
* If there are any problems, please let me know and I mention the issue here.
* (for contact details see http://www.plasmaphysics.org.uk/feedback.htm ).
*
* Thomas Smid, May 2007
*********************************************************************************/
COULOMBB2: PROCEDURE(Z,N0,L0,R,PNL) ;
DEFAULT RANGE(A:Z) DEC FLOAT VALUE (DEC FLOAT(16)) ;
DCL (N0,L0,ERO2EX,FAKEX,FAKEXL,SQNEX,LEX) DEC FIXED(15,0) ;
DCL (LAGUERRE2,NUM,MULT) ENTRY ;
ON UNDERFLOW ;
LOG10E=4.342944819032518E-01 ;
ZN=2*Z/N0; RO=ZN*R; RLE=RO/2*LOG10E ;
ERO2EX=-CEIL(RLE) ;
ERO2=10**(-(RLE+ERO2EX)) ;
FAKEX=0; SQNEX=0; L=0; LEX=0;
CALL LAGUERRE2(RO,N0,L0,L,LEX) ;
N1=N0; FAK=RO/SQRT(N1) ;
CALL NUM(FAK,FAKEX) ;
IF L0=0 THEN GO TO CONT ;
DO N=1 TO L0 ;
N1=N ;
SQN=RO/SQRT((N0+N1)*(N0-N1)) ;
CALL NUM(SQN,SQNEX) ;
FAKL=FAK; FAKEXL=FAKEX;
CALL MULT(FAKL,FAKEXL,SQN,SQNEX,FAK,FAKEX) ;
END ;
CONT:LX=FAKEX+ERO2EX+LEX ;
PNL=FAK*ERO2*L*10**LX ;
PNL=PNL*SQRT(Z)/N0 ;
END COULOMBB2 ;
/********************************************************************************
* The subroutine for the calculation of the Laguerre polynomials is based on the
* recursive relationships (Abramowitz and Stegun, Handbook of Mathematical Functions):
*
* L0q(x)=1
* L1q(x)=q+1-x
* Lpq(x)=1/p.[(2p+q-1-x).Lp-1q(x) -(p-1+q).Lp-2q(x)]
*
* Input parameters are:
* X: argument of the Laguerre polynomial
* N0: principal quantum number
* L0: angular momentum quantum number
*
* Output parameters are:
* L: mantissa of Laguerre-polynomial
* LEX: exponent of Laguerre-polynomial
*
* Required subroutines:
* NUM, ADD, MULT, DIV
* (to avoid numerical overflow or underflow for large indices).
*
*****************************************************************************/
LAGUERRE2: PROCEDURE(X,N0,L0,L,LEX) ;
DEFAULT RANGE(A:Z) DEC FLOAT VALUE (DEC FLOAT(16)) ;
DCL (N0,L0,I,J,IJEX,XJEX,JIEX,LL2EX,LL1EX,L2EX,L1EX,L12EX,LEX)
DEC FIXED(15,0) ;
DCL (NUM,ADD,MULT,DIV) ENTRY ;
ON UNDERFLOW ;
L=0; LEX=0; LL1EX=0; IJEX=0; XJEX=0; JIEX=0; L1EX=0; L2EX=0; L12EX=0;
IF L0=N0-1 THEN DO ;
L=1; LEX=0;
GO TO ENDE ;
END ;
I=L0+1 ;
LL2=1; LL2EX=0;
LL1=2*I-X ; CALL NUM(LL1,LL1EX) ;
IF L0=N0-2 THEN DO ;
L=LL1; LEX=LL1EX;
GO TO ENDE ;
END ;
DO J=I+2 TO N0 ;
IJ=I+J-2 ;
CALL NUM(IJ,IJEX) ;
XJ=2*J-2-X ;
CALL NUM(XJ,XJEX) ;
JI=J-I ;
CALL NUM(JI,JIEX) ;
CALL MULT(XJ,XJEX,LL1,LL1EX,L1,L1EX) ;
CALL MULT(IJ,IJEX,LL2,LL2EX,L2,L2EX) ;
L2=-L2 ;
CALL ADD(L1,L1EX,L2,L2EX,L12,L12EX) ;
CALL DIV(L12,L12EX,JI,JIEX,L,LEX) ;
LL2=LL1; LL2EX=LL1EX;
LL1=L; LL1EX=LEX;
END ;
ENDE: END LAGUERRE2 ;
/***********************************************************************************
* The subroutines NUM, ADD, MULT, DIV enable basic arithmetic operations of numbers
* with exponents up to ±1015.
* NUM separates usual floating point numbers (X) into a mantissa (X) and exponent (XEX),
* and ADD, MULT, DIV provide the basic arithmetic operations of these representations,
* where XM,XEX,YM,YEX are the two input numbers and XYM, XYEX the result.
***********************************************************************************/
NUM: PROCEDURE(X,XEX) ;
DEFAULT RANGE(A:Z) DEC FLOAT VALUE(DEC FLOAT(16)) ;
DCL X DEC FLOAT(16) ;
DCL XEX DEC FIXED(15,0) ;
LAX=LOG10(ABS(X)) ;
XEX=FLOOR(LAX) ;
X=10**(LAX-XEX)*SIGN(X) ;
END NUM ;
ADD: PROCEDURE(XM,XEX,YM,YEX,XYM,XYEX) ;
DEFAULT RANGE(A:Z) DEC FLOAT VALUE(DEC FLOAT(16)) ;
DCL (XM,YM,XYM) DEC FLOAT(16) ;
DCL (XEX,YEX,XYEX) DEC FIXED(15,0) ;
IF XM=0&YM=0 THEN DO;
XYM=0; XYEX=0;
RETURN;
END ;
IF XM=0 THEN DO;
XYM=YM; XYEX=YEX;
RETURN;
END ;
IF YM=0 THEN DO;
XYM=XM; XYEX=XEX;
RETURN;
END ;
IF XEX>=YEX THEN DO ;
XYEX=XEX ;
XYM=YEX-XEX; XYME=XYM;
IF XYM<-60 THEN XYM=0; ELSE XYM=10**XYME ;
XYM=XM+YM*XYM ;
END ;
ELSE DO ;
XYEX=YEX;
XYM=XEX-YEX; XYME=XYM;
IF XYM<-60 THEN XYM=0; ELSE XYM=10**XYME ;
XYM=XM*XYM+YM ;
END ;
IF ABS(XYM)>=10 THEN DO ;
XYM=XYM/10; XYEX=XYEX+1 ;
END ;
IF ABS(XYM)<1 THEN DO;
XYM=XYM*10; XYEX=XYEX-1;
END ;
END ADD ;
MULT: PROCEDURE(XM,XEX,YM,YEX,XYM,XYEX) ;
DEFAULT RANGE(A:Z) DEC FLOAT VALUE(DEC FLOAT(16)) ;
DCL (XM,YM,XYM) DEC FLOAT(16) ;
DCL (XEX,YEX,XYEX) DEC FIXED(15,0) ;
IF XM=0|YM=0 THEN DO ;
XYM=0; XYEX=0;
RETURN;
END ;
XYM=XM*YM ;
XYEX=XEX+YEX ;
IF ABS(XYM)>=10 THEN DO ;
XYM=XYM/10; XYEX=XYEX+1 ;
END ;
END MULT ;
DIV: PROCEDURE(XM,XEX,YM,YEX,XYM,XYEX) ;
DEFAULT RANGE(A:Z) DEC FLOAT VALUE(DEC FLOAT(16)) ;
DCL (XM,YM,XYM) DEC FLOAT(16) ;
DCL (XEX,YEX,XYEX) DEC FIXED(15,0) ;
IF XM=0 THEN DO;
XYM=0; XYEX=0;
RETURN;
END ;
XYM=XM/YM ;
XYEX=XEX-YEX ;
IF ABS(XYM)<1 THEN DO ;
XYM=XYM*10; XYEX=XYEX-1 ;
END ;
END DIV ;
|