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Abstract

The scattering coefficient of highly excited atomic levels formed by recombination from a 
plasma and energetically broadened by plasma field fluctuations is determined. For this 
purpose, the population of the levels is calculated from a detailed balance equation which 
is  solved  consistently  together  with  the  corresponding  equation  for  the  free  electron 
spectrum. All relevant quantum mechanical cross sections and decay constants as well as 
the elastic electron scattering cross sections are hereby derived from first principles in a 
form directly suitable for numerical application. 
A special emphasis in the theoretical treatment is laid on the problem of the determination 
of the energetical level broadening for a given plasma density and -energy , because the 
spectral line width of a discrete transition is the crucial quantity affecting the resultant 
scattering coefficient as a function of frequency, and because usual theoretical approaches 
concerning  Stark  broadening  are  either  inconsistent  or  insufficient  for  the  present 
purpose.   Furthermore,   as  a  new aspect  concerning  the interaction  of  radiation  with 
atoms, the effect of a finite wave field strength  (compared to the plasma fluctuation field) 
and  the  wave  coherence  on  the  photoionization  cross  section  is  considered  as  an 
important mechanism which has to be taken into account in a complete and consistent 
theory.
Numerical results are obtained for initial values appropriate for ionospheric conditions. 
The solution proves to be in no way related to LTE- situations,  therewith invalidating 
usual treatments of the problem, which are not consistently based on a detailed balance 
approach.
With  the  present  theory,  the  scattering  coefficient  for  radio  waves  (  in  particular  for 
frequencies  < 100 MHz) turns out to depend sensitively on the electron impact-  and 
(radio-)photo  -ionization frequencies since they determine the level population for high 
quantum numbers (this offers for instance a straightforward explanation for the so called 
ionospheric 'short wave fadeout' which is observed in connection with solar radio bursts).
The  theoretical  result  for  the  equilibrium  coefficient  for  resonant  scattering  of  radio 
waves  by  Rydberg  atoms  is  consistent  with  experimental  data  obtained  from  the 
ionosphere. This suggests that the considered mechanism is exclusively responsible for 
the scattering of radio waves in particular and electromagnetic radiation in general.
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1.    Introduction

Though being generally of little importance for the overall energy and radiation budget in 
natural plasmas, atoms in highly excited states may become significant and observable if 
energies very small compared to the average plasma energy are being examined.
From a  variety  of  astrophysical  objects  for  example,  such  as  HII-regions,  planetary 
nebulae and galaxies, line transitions up to quantum numbers as high as  n=350 have been 
detected  by means  of  radio  telescopes.   These  observations  are  being  used  to  derive 
physical properties of these objects like density and temperature. 
The observed line radiation related to the excited states is generally due to spontaneous 
decay to lower lying states, whereby the intensity of the lines is proportional to the level 
population  (the  usual  designation  of  these  lines  as   'recombination  lines'  is  therefore 
somewhat  inaccurate,  since  one  is  not  dealing  with  photons  related  to  the  radiative 
recombination process (bound-free transitions) but to bound-bound transitions following 
radiative capture into high levels).
On the other hand, the non-zero density of atoms in high levels also provides the chance 
that  radiation  with a frequency corresponding to  the energy difference  between those 
states may be resonantly scattered exactly analogous to transitions involving the ground 
state. This possibility has so far been neglected in the literature concerning the physics of 
highly excited atomic states.
Several aspects have to be considered for calculating the scattering efficiency of Rydberg 
states correctly:
a)  for the determination of the production rate for each level:   a non-LTE calculation of 
the energy distribution  of  free plasma electrons  for energies  as  small  in  value as  the 
energy of this bound state; the radiative recombination cross sections and decay constants 
for those continuum energies and discrete levels; the rate of elastic collisions interfering 
with the recombination process and cascading between the bound states ;
b) for the loss processes: knowledge of the life time of each level with regard to radiative 
decay to lower levels; collisional -and photo -ionization out of these states;
c) determination of the level broadening by plasma field fluctuations which enables line 
scattering even if the wave frequency does not match the transition frequency to within a 
natural or Doppler linewidth;
d) the resonance scattering cross section involving two states;
e) a weighted summation of the resultant scattering coefficient over all broadened states;
f) (in connection with b)): the dependence of the photoionization cross section upon the 
field strength and coherence of the wave field .
In the present literature, points a) and b) are usually treated only by methods relating to 
LTE-approximations.
For the case of low density plasmas and quantum states n≤10, it has however already been 
shown by means of a detailed balance approach (Smid, 1987) that the LTE- concept lacks 
completely a physical justification. The method developed there will be extended for the 
present purpose to the appropriate energy range and quantum numbers.
Some confusion exists presently still also about the degree of line broadening by plasma 
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field  fluctuations,  which  is  for  instance  reflected  in  the  discussion  of  corresponding 
astronomical  observations.  This  indicates  also the  necessity  for  a  different  theoretical 
approach to this problem.
Since a consistent theoretical treatment of the relevant atomic processes (photoionization, 
radiative recombination, resonance scattering) is not available in the generally accessible 
literature, it is given here in suitable form in a separate appendix section, based on the 
approach used in the thesis of Smid (1987). The same holds for the problem of elastic 
electron- electron -(Coulomb-) scattering which is relevant for calculating the free-free 
and bound-free collision rates.

Numerical  results  are  primarily  obtained  for  physical  situations  corresponding  to 
scattering  of  radio  waves  in  the  ionosphere  and  (where  it  is  possible)  compared  to 
experimental data,  but there is also a reference to astrophysical plasmas since transitions 
between high Rydberg states are a more or less well known phenomenon in this area of 
research  and  numerous  high  resolution  measurements  of  the  radio  emission  of 
astronomical objects exist which can aid as a test of the theory.
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2.   Theory

2.1    Determination of the Level Population
         in Detailed Balance Equilibrium

In detailed balance equilibrium, the density of atoms in the excited state  n (where n=1 
shall designate the atoms ground state, i.e. n is the effective quantum number)  is given by 
the quotient of the production rate and loss (depopulation) frequency 

Nn = qn/νn
loss .        (1)

The production rate consists of the primary production rate due to radiative recombination 
qn

Rec  and a secondary rate due to cascading from higher levels, that is

qn  =qn
Rec + qn

casc .         (2)

Induced excitation from lower levels by radiation or collisions is neglected here because 
the cross section for a resonant transition from level  n-∆n to  n (n>>1; ∆n<<n) decreases 
like  (∆n)-3 (as  it  follows  from Eq.(A.1.15))   and  limits  thus  eventual  transitions  to 
neighboring states for which, however, the production and loss rates will be almost the 
same (at least for natural conditions) so that the effect cancels out.

In the absence of collisions interfering with the recombination process, the first term in 
Eq.(2) is given by

                                              ∞

qn
Rec,0   =   ηn

Rec .Np  .∫ dε  Ne(ε) . σn
Rec(ε'(ε,εI)) 

. v'(ε,εI) ,        (3)
                                             0

where  ε is a dimensionless energy variable characterizing the energy of the free  plasma 
electron in the laboratory system ( as defined by the center of mass of the ions),  Np the 
total  plasma  (ion)  density   which  is  related  to  the  energy  specific  electron  density 
distribution function Ne(ε) by the condition of quasi neutrality of the plasma 
 

                 
                    ∞

Np  =   ∫ dε  Ne(ε) .        (4)

                   0
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Furthermore,  v'(ε,εI)  is the relative velocity between the recombining electron and an ion 
of average energy  εI in  the laboratory system,  σn

Rec(ε'(ε,εI))  the recombination  cross 

section into level n for the corresponding relative kinetic energy  ε'  (see Eqs.(11) and 
(12))  and  ηn

Rec a reduction factor which takes the Stark broadening of the level n into 
account if this becomes comparable to the level energy (see Sect.2.3, Eq.(79)).

However,  Eq.(3) neglects  the  fact  that  the  recombination  process  does  not  proceed 
infinitely fast but within a finite time given by the effective quantum mechanical decay 
constant (see Appendix A, Eq.(A.2.19))

An
Rec   = 7 .104 .n-3.4           [sec-1]        (5)

and can thus be interrupted by energy changing collisions with the other plasma electrons. 
In order to describe this effect correctly, one has to make assumptions about the details of 
the recombination process, because it represents a fundamental problem that the decay 
time of the continuum electron into a bound state is many orders of magnitude larger than 
the  time  the  electron  spends  in  the  vicinity  of  the  ion  (as  given  by  the  quantum 
mechanical wave function for the level n).
It is therefore assumed here that the electron first 'recombines' radiationless into a 'pre-
bound' state  n (|n| = |n|) within a sufficiently short time and then decays into the actual 
state n according to the constant  An

Rec under emission of a photon with a frequency 
corresponding to the energy difference between the initial energy of the free electron and 
the  bound  level  n   (it  is  beyond  the  scope  of  this  paper  and  requires  further  basic 
theoretical work to answer the question, how energy is conserved during this two stage 
process;  it should be obvious, however, that this model is the only physically reasonable 
one considering the different time scales involved in the problem).
The density in the 'pre-bound' state n is then given by

Nn  =  qn
Rec,0 / (Αn

Rec+νn
c) .        (6)

Apart from the decay to the actual bound state n (determined by An
Rec), a further loss for 

the  'level'  n is  assumed  here  to  arise  from  elastic  scattering  by  the  bulk  of  plasma 
electrons (of density   Np  and average energy  εp) back into the continuum, which (for 
large n) occurs with a collision frequency

νn
c  = 1.2 . 10-8 . (Np/εp)  . n       [sec-1] ,        (7)

if one assigns classically to the state  n the energy of the related actual quantum level n 
(Eq.(7) corresponds thus to the frequency for collisional ionization by electrons from the 
atomic level  n; see Appendix B, Eq.(B.20)).
The recombinative production rate for level n is then
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qn
Rec  =Nn  

.An
Rec  =

           =  αn
Rec,c  .qn

Rec,0 ,        (8)

where

αn
Rec,c  :=  Αn

Rec/ (Αn
Rec+νn

c)        (9)

is the recombinative - collisional 'branching- ratio'  for 'level'  n  (see also  Fig.1  for a 
schematic illustration of this 'two-step' recombination model).

The relative quantities v' and ε'  in Eq.(3) can usually be identified with the velocity and 
energy of the electron because of the small velocity of the ions related to their higher 
mass , and only for electron velocities within the core of the ion velocity distribution 
function does the latter become relevant. Since the velocity ratio between the ion of mass 
M and the electron of mass m  is connected to their kinetic energy ratio through

vI/ve  =  √ ( m/M  . εI/ε ) ,      (10)

and because vI and εI shall represent here an average ion velocity and energy (as given by 
their thermal values for instance), one can therefore adopt in a simplifying manner 

ε'(ε,εI)  =    { ε     for   ε>εI.m/M
,      (11)

                               
ε

I
.m/M    for   ε≤ε

I
.m/M

to which  v' is related by

v'(ε,εI) =  v0 . √ ε'(ε,εI) ,      (12)

where 

v0  :=  ve(ε=1)      (13)

is the normalizing electron velocity  (=2.2 .108 cm/sec  if  ε is in units of Rydberg).

8
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With this, the recombination rate into level n becomes

                                                              ∞

qn
Rec  =  αn

Rec,c .ηn
Rec .Np 

. v0  .∫ dε  Ne(ε) . σn
Rec(ε'(ε,εI)) 

. √ε'(ε,εI) .    (14)
                                                             0

By assuming the integrand constant within subintervals  εk-1, εk  ( ε0=0), one can finally 

write the discrete sum approximation

                                       ∞

qn
Rec  =   αn

Rec,c   .∑Ne,k . νn,k
Rec,0 ,      (15)

                                      k=1

with

Ne,k  =  (εk-εk-1) . Ne(εk)      (16)

and

 νn,k
Rec,0   =   Np 

. v0 . σn
Rec(ε'k) .ηn

Rec . √ε'k ,                (17)

where the explicit argument of ε' has been dropped here .

Since the recombination cross section in Eq.(17) is a known quantity (see Appendix A.2) 
and the associated reduction factor due to excessive level broadening is independently 
derived  in  Sect.2.3  (Eq.(79)),  the  only  unknown in  Eq.(15)  is  the  electron  spectrum 
Ne(εk) which is determined in the separate Section 2.2 (although actually a set of coupled 
equations describing the densities in the discrete (Nn) and continuous energy region is 
being solved).

The loss frequency for the excited state n is given by the sum of the total spontaneous 
decay probability to lower levels  An and the collisional (νn

c) and photoionization (νn*) 

frequencies out of this state, that is

νn
loss  = An + νn

c + νn* ,      (18)

where
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                   n-1

An  =   ∑Am,n          ;   (n≥2) .      (19)
                  m=1

The decay constant for a dipole transition from the upper level n to the lower level m can 
be numerically approximated by 

Am,n  ≈ 1.3 .109  . m-1.8 .(n-1)-3.2    .Min[1, m/(n-1)0.75]          [sec-1]    ,        (20)

where the last factor is a correction for contributions of higher angular momentum values 
considering the initial population of the level n due to recombination (see  Appendix A.1, 
Eq.(A.1.14) and App.A.2, Eq.(A.2.10)).
(in  the case n=2,  Eq.(20)  holds of  course only for  the 2p state,  since the 2s  level  is 
metastable with regard to a decay into the (1s) ground state).
An explicit numerical evaluation of Eq.(19) shows that the total decay probability from 
level n can be approximated by

A n  ≈ 1.1 .109  . (n-1)-3.6            [sec-1]                  (21)

(one  should  note,however,  that  only  Eq.(19) itself  gives  exact  consistency  with  the 
cascading scheme Eq.(30)).

The collision frequency for ionization by plasma electrons is given by Eq.(7)   (or Eq.
(B.20) ) and the photoionization frequency for level n is

                              ∞

νn*  =  ηn
Ion 

. ∫ df  Fph(f) . σn
Ion(f) ,      (22)

                            fn

where Fph   is  the ionizing  radiation flux at  frequency f   in photons/unit  area/sec/unit 
frequency interval  ( fn being the minimum (threshold) frequency for ionization of level 
n) and  σn

Ion  the ionization cross section for level n for which the symmetry property 
holds (see also Appendix A.2)

σn
Ion(f)  =  σn

Rec(ε(f)) ,      (23)

with

ε(f)   =  f/f0  - εn                     ;     f≥fn      (24)
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where  

εn  = fn /f0 ,      (25)  

and f0 is a unit frequency which provides the conversion to the dimensionless energy unit 
ε . It is convenient to choose f0 to be the threshold frequency for ionization of the ground 

state  of hydrogen (3.2898  .1015 Hz)  which normalizes  ε to  the energy of  1  Rydberg 
(13.6058 eV).
In the case of hydrogen,  εn  is then given by the Rydberg formula

εn
H

  = 1/n2 ,      (26)

which can also be considered to be a good approximation for other elements  if n>>1, 
since highly excited states are hydrogenlike due to the large distances of the electron orbit 
from the atomic nucleus and the other atomic electrons (Eq.(26)  holds for the case of 
singly excited neutrals (recombination of a singly ionized gas), which is the assumption 
throughout this paper;  otherwise a factor Z2, where Z is the degree of ionization, would 
occur).
The factor  ηn

Ion in Eq.(22)  takes into account that the ionization efficiency of a given 

radiation  field  may  depend  on  its  degree  of  coherence,  its  field  strength  and  on 
disturbances by collisions with other particles during the ionization process. Because this 
topic has to go beyond the usual perturbation theory used for calculating the ionization 
cross section, it  is discussed in the separate section 2.4 where the appropriate form for 
 ηn

Ion  is derived (Eq.(91)).

Eq.(22)   can be discretized by transforming to the excess energy unit  ε  defined by Eq.
(24) and assuming the integrand constant over subintervals  εk-1, εk  , so that

                              ∞

νn
*  =  ηn

Ion . ∑(εk- εk-1) .Fph(εk) . σn
Ion(εk)  ,      (27)

                             k=1

where the normalization is now such that the photon flux has to be taken 
per energy interval ∆ε, i.e.

Fph(ε)  =  Fph(f)  . f0 ,      (28)

as  it  follows  from  Eq.(24) (if  f0 =  3.2898  .1015 Hz,   Fph(ε)  is  thus  in  units  of 
photons/Rydberg  ; if the energy flux of the radiation is given instead of the photon flux, 
the former has to be transformed by means of Eq.(94)).
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Through  Eqs.(1),(2),(15),(18),(21),(7) and  (27),   Nn is  therefore  determined  if  the 

production due to cascading is negligible,  which is true for sufficiently high quantum 
numbers, because the decay constant becomes rapidly smaller with increasing n and ,on 
the other hand, the collision frequency increases.
Defining  a  quantum  number  n0 such  that  the  level  population  for  n=n0+1  can  be 
determined without considering cascading, the cascading rate into level  n0 becomes thus

                         ∞ 

qn0
casc  =  ∑  Nm 

. An0,m ,      (29)
                           m=n0+1

where An0,m is the spontaneous decay constant for transitions from level m to n0 as given 

by Eq.(20)  (note  however  the  interchange  of  the variables  designating  the  lower and 
upper state respectively, which arises from the convention used throughout this paper that 
the first subscript always indicates the lower state).
Repeating  this  procedure  recursively  for  values   n=n0-1,  n0-2  ....etc.  yields  then  the 
cascading rate into each level n  via Eqs.(1) and (2)  and

                        ∞  

qn
casc  =  ∑  Nm 

. An,m .      (30)

                          
m=n+1

It  should already be noted that,  because of the very low densities  Nm   and the small 
cascading probabilities implied by Eq.(20) for high quantum numbers, qn

casc  tends to be 
much smaller than the primary production rate  qn

Rec  .  Only for sufficiently small values 
of n, for which the level population decreases strongly because of the rapidly increasing 
probability of decay to lower levels (Eq.(21)) and the resulting decreasing importance of 
collisions, does cascading become significant.

Compared to cascading,  induced redistribution of the electrons  (either  by radiation or 
collisions) among the levels can be neglected, because , as already indicated below Eq.
(2),  transitions  are  effectively  limited  to  neighboring  states  for  which  (under  natural 
conditions) the initial production and loss rates and therewith the occupation numbers are 
almost the same, so that the net effect of induced transitions between those states will be 
zero. Only for an extremely selective,  coherent and powerful excitation,  which can be 
achieved in laser applications for instance, could this process become significant.
One should also note that the collisional ionization of each level has been assumed here to 
be only due to free plasma electrons, i.e. the contribution of ions and neutrals to the loss 
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frequency (Eq.(18)) is considered as insignificant. This simplification is justified, because 
for all atomic levels of interest here the orbital velocity of the bound electron is much 
higher  than  the  thermal  velocity  of  ions  and neutrals,  which  makes  energy changing 
collisions with the latter very ineffective (see also Appendix B, Eq.(B.25)). In the case of 
neutrals, the ionization efficiency is especially small since the collision cross section is 
much  smaller  than  for  Coulomb  scattering  where  σn

c increases  proportional  to  the 
quantum number n due to the unscreened potential  of the colliding particles  (see Eq.
(B.15)) .
Only if a very high neutral/plasma density ratio compensates for the small collision cross 
section, may the excited atom density be controlled by neutral constituents. With regard 
to the earths ionosphere, this may happen at D-region heights and below.

Concerning the applicability of the results obtained with a detailed equilibrium approach, 
one  should  be  aware  that  one  is  essentially  limited  to  situations  where  there  is  no 
variation in the physical parameters over the longest characteristic time scale entering into 
the problem, which is here given by the recombination constant   An

Rec (Eq.(5))  and the 
elastic collision frequency  ν0

c (see Eq.(B.23)).  Because this amounts up to many hours 

for those atomic levels and plasma densities of interest here, a relatively small increase in 
the  loss  frequencies   νn

c  or  νn*   may  lead  to  a  considerable  decrease  in  the  level 
population Nn during a time interval small compared to this. A quantitative determination 
of  these  short  term variations  of  Nn  is  therefore  only  possible  by  means  of  a  time 

dependent consideration of the problem. On the other hand, the detailed balance approach 
may be applied in a quantitative sense even to non-stationary situations if only long term 
(several  hours  in  this  context)  integrals  or  averages  are  being  considered   (see  also 
Sect.3.5  and  the  discussion  of  the  theoretical  and  experimental  radar  scattering 
coefficients in Sect.3.4.3).
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2.2    Determination of the Plasma Electron Distribution Function

The  energy  distribution  functions  of  the  plasma  electrons  can  be  calculated  from  a 
balance equation including the production and loss rates due to photoionization, radiative 
recombination and inelastic  and elastic  collision processes. For ionospheric conditions 
and energies  ε>0.01 (ε=1 ≅1 Ry =13.6058 eV), it is almost exclusively determined by the 
first  three  processes,  elastic  (electron-electron)  collisions  being  only  of  a  secondary 
nature. Above approximately 3 eV (ε≈0.2) inelastic collisions (with neutral constituents) 
constitute  the  main  loss  mechanism  determining  the  electron  spectrum,  whereas  for 
smaller  energies  the strongly increasing cross section for radiative  recombination  into 
high levels (see Appendix A.2) leads to a rapidly decreasing value of Ne(ε) (Smid,1987). 

For  the  energies  considered  in  Smid(1987)  (ε≥0.01;   corresponding to  n≤10 (see  Eq.
(26))), the individual recombination process is fast enough (A10

Rec≈ 28 sec-1 ; see Eq.(5)) 

to neglect interfering elastic collisions  (νn
c ≈2.6.10-2 sec-1 (see Eq.(7) for n=10, εp=0.5 

and a plasma density of Np=105    cm-3)). For much smaller energies, however, elastic 
collisions  will  eventually  limit  the  actual  recombination  rate  because  of  the  rapidly 
decreasing value of αn

Rec,c  (~ n-4.4 ) if  νn
c>An

Rec  (Eq.(9)).  One can find the quantum 

state  n*  where  the  transition  from  the  collisionally  undisturbed  to  the  disturbed 
recombination occurs by equating Eqs.(5) and (7), with the result

n* =  (5.4 .1012 .εp/Np)0.23 ,      (31)

where the plasma density Np has to be taken in [cm-3]  and the average plasma energy εp 
in units of Rydberg ( for Np =105 cm-3 and  εp=0.5,  n*=51) (the numerical results will 
show that the excited atomic densities Nn have a maximum value just for a state n which 
is close to n*).
For  continuum  energies   ε<1/n*2 (in  units  of  Rydberg),  the  interference  of  elastic 
collisions  with  the  recombination  process  will  therefore  lead  to  a  saturation  of  the 
electron  spectrum  Ne(ε),  whereas  for  higher  energies  the  latter  reflects  basically  the 
energy dependence of the total recombination frequency νT

Rec,0(ε) ; see Appendix A.2, 

Eq.(A.2.17) and Sect.3.2).

A  further  possible  mechanism affecting   Ne(ε)  even  at  very  low  energies  could  be 

inelastic scattering of photoelectrons of higher energy (impact- ionization and  -excitation 
of atoms or molecules) .
A detailed knowledge of the relationship between photoelectron energy and the energy 
loss spectrum related to the relevant inelastic transitions (including the associated cross 
sections) would be necessary in order to treat the problem consistently, which is beyond 
present  theoretical  understanding  of  inelastic  collision  processes.  On  the  other  hand, 
experimental data concerning inelastic scattering usually have a spectral resolution of not 
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much better than 0.01 Ry, which is by far insufficient for the present consideration which 
deals with energies and energy differences as small as 10-6 Ry and less.
However, from the energy loss data published in Massey (1969) (Chpts.11 and 13) and 
Rees  (1989)  (pp.114 ,  272-273)  one  can  conclude  that  the  cross  section  for  inelastic 
collisions  involving  an  energy  loss  comparable  to  the  electron  energy  itself  ('near 
threshold  excitation')  is  very small,  i.e.  only  very few electrons  will  end  up  with  an 
energy  as  close  to  zero  as  indicated  above.  For  the  case  of  the  earth's  ionosphere, 
computations  show  (Smid,  1987)  that  the  frequencies  for  the  elastic  and  inelastic 
collisions are comparable in magnitude at energies corresponding to the maxima of the 
continuous cross section curves for the latter process (>1 Ry) (although elastic collisions 
are  insignificant  below a  height  of  500 km for  the shape  of  the electron  distribution 
function because the related changes in the production and loss rates partially compensate 
and  the  life  time  with  regard  to  radiative  recombination  is  not  long  enough  for 
'thermalization' to occur).
Because the 'near threshold' cross section for an inelastic collision can be expected to be 
several orders of magnitudes smaller than the maximum value, one can thus assume that 
the  corresponding  production  rate  at  very  small  energies  is  smaller  by  this  factor  if 
compared to the production due to elastic collisions.
For the present purpose, it has therefore been decided to neglect the effect of inelastic 
collisions completely,  because also below about 10-3 Ry there is no significant energy 
loss due to excitation of rotational, vibrational or fine structure transitions .

With this assumption, the balance equation for the production and loss rates determining 
the density  Ne,k of free electrons in the energy interval εk-1, εk (Eq.(16)) can be written 

as

                      M                           ∞                         ∞

p1,k    + ∑ Ne,i 
.νi,k

c    + ∑ Nn 
.νn,k

c    + ∑ Nn . (νn,k
c +νn,k*)     =

                    i=1                           n=2                        n=2
                    ≠k

                        M                   ∞

= Ne,k  . ( ∑ νk,i
c    + ∑ νn,k

Rec,0 )              ;   k=1,M ,      (32)
                        i=1                n=1
                         ≠k

where the summation over the energy index of the plasma electrons has now been limited 
to a maximum value M rather than infinity as in Eq.(15), therewith restricting the energy 
spectrum from    εk= 0....εM. 

The various collision frequencies are (see Fig.1) :
νi,k

c   is the frequency for elastic free-free (Coulomb-) scattering of electrons from the 
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energy range  εi-1, εi  into εk-1, εk     ( νk,i
c  indicates the inverse process), assuming that 

there is no scattering within the interval εk-1, εk   itself    (i.e.  i≠k) (see Appendix B , Eq.

(B.17)),
νn,k

c    is  the frequency for elastic  collisions from the bound level  n (electron impact 
ionization) into the continuum energy range εk-1,  εk  ,  νn,k

c  the  (numerically identical) 
frequency for the 'pre-bound' level  n, (Appendix B , Eq.(B.19))   and

νn,k*   =  ηn
Ion . Fph(εk). σn

Ion(εk)      (33) 

is the photoionization frequency from level n (see Eq.(27)) (note that it is assumed in Eq.
(32)  that there is no photoionization from the 'pre-bound' level n ).
The recombination frequency  νn,k

Rec,0   into the pre-bound level  n  is given by Eq.(17) 
and  p1,k   is the primary production due to ionization of the ground state of neutrals, 

which is taken here separately as an external boundary condition ( note that the ground 
state  n=1  (and  n=1)  has  been   excluded  from  the  sum  describing  collisional  and 
photoionization from the individual levels) and is assumed to be of the form

 p1,k   =   p0 . (εk - εk-1) ,      (34)

that is, the production function   p1(εk)  is taken as const. =  p0 ,  which is a reasonable 

approximation in view of the fact that the photoionization cross section for the ground 
state  decreases  from its  maximum value roughly as  √ε for  ε→0 (see Appendix A.2), 
whereas  on  the  other  hand  the  cross  section  for  electron  impact  ionization  (which 
contributes nearly the same amount to the total production rate as photoionization (Smid, 
1987)) varies in the inverse manner (see Appendix B, Eq.(B.20)).
Rather than calculating  p0 explicitly from the local density of neutrals and the ionizing 

radiation flux, it is a more convenient method here to define it implicitly by noting that in 
equilibrium the total ionization rate from the ground state must equal the recombination 
rate (including cascading from higher levels)  into the ground state, that is

        M    

∑ p1,k   = p0 . εΜ  =  q1      (35)
     k=1

(where q1  is given by Eq.(2),(15) and (30) ) and imposing instead the external boundary 

condition of a given plasma density Np  over the normalizing equation  (see Eq.(4))
 

        M
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∑ Ne,k   =   Np .      (36)
      k=1

In  this  form,  Eq.(32)  reduces  to  a  system  of  equations  determining  the  normalized 
electron distribution function

fe(εk)  :=   Ne(εk)/ Np   =

             =  Ne,k /(εk-εk-1) / Np ,                     (37)

i.e.  Eq.(32) becomes

                               M                               ∞                      ∞

q1
.∆εk/εΜ   + Np

.∑ ∆εi 
.fe(εi).νi,k

c  +∑ Nn 
.νn,k

c   +∑ Nn . (νn,k
c +νn,k*)=  

                              i=1                             n=2                     n=2
                              ≠k
 

=   Np
.∆εk .fe(εk)  . [ νk,L

c   + νT,k
Rec,0 ]              ;   k=1,M  ,                (38)

where

                        M                

νk,L
c  =   ∑ νk,i

c                              (39)
                       i=1           
                       ≠k

(see Eq.(B.18)),
                                ∞

νT,k
Rec,0   =     ∑ νn,k

Rec,0                             (40)
                               n=1

(see Eqs.(17), (A.2.17) , 

and

∆εk  = εk - εk-1 ,
∆εi  =

 εi - εi-1 .      (41)

Eq.(38) is a system of M equations for the M unknowns fe(εk) . Together with Eq.(1),(2),
(6) and (15) , which determine the recombination rate q1 and the atomic level densities Nn 
and  Nn,  they  represent  a  consistent  set  of  coupled  equations  for  the  discrete  and 
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continuous electron spectrum (see also  Fig.1, where the transitions between the various 
electronic  states are illustrated through a schematic energy level diagram   (using the 
definitions of this chapter)).
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2.3    Stark Broadening of Atomic Levels by Plasma Field Fluctuations

For  atomic  transitions  related  to  small  quantum numbers  it  is  usually  (under  natural 
conditions) sufficient to calculate the corresponding line profile only from the apparent 
natural and Doppler broadening involved (see Appendix A1. Eq.(A.1.4) and following). 
In order to obtain the correct frequency dependent scattering cross section for transitions 
between highly excited states, it is however essential to consider the explicit energetical 
shift  or  broadening of  the atomic  levels  by external  perturbations,  because  disturbing 
fields  which  are  insignificant  for  small  quantum numbers  may become important  for 
higher states.  This is due  to the strongly decreasing values for the natural broadening 
Am,n  (Eq.(A.1.14),  Doppler  broadening (if  transitions between neighboring states are 

being considered; Eq.(A.1.6) and Eq.(A.1.10)) and the level separation (Eq.(A.1.10)  with 
increasing m,n.
On the other hand, the energy shift caused by external fields is at least independent of the 
quantum number (as for the magnetic field; Zeeman effect). In the case of an electric field 
(Stark effect) it increases  even for higher states, which is evident from considering the 
work  a  homogeneous  static  electric  field  does  on  an  electron  in  level  n  during  one 
revolution in its orbit, namely

(δW)n,S
Static =  ±  e . |E||| . 2.‹r›n   =  

=  ±  e . |E||| . r0 .n2 ,      (42)

with e  the elementary charge ,  E||  the average electric field amplitude in the orbital plane 

of the electron,  ‹r›n  the expectation value for the radius of the electron orbit in state 

n>>1 (Eq.(A.1.12)), r0 the Bohr radius and the  ± sign arises from the circumstance  that 

during one half of the orbit the electron gains this  energy,  while on the other half it 
looses the same amount.
(Note added later: Eq.(42) effectively assumes a linear Stark effect. This is justified here  
because high Rydberg states can be considered to be hydrogen-like.  Additionally,  the  
electric microfield  due to the plasma is not static but varies on a time scale which is  
practically  for  all  cases  much shorter  than the  time  required  to  polarize  the  atomic  
charge distribution (which should be given by the linear Stark frequency). The present  
treatment should therefore also be applicable to low lying states of multi-electron atoms).  
In the case of a static (the conditions under which a field can be considered as static will 
become evident  below) and macroscopically directed electric  field  of strength  |E|,  the 
projected field is classically simply given by

|E|||   =  |E| . cosα ,      (43)

where  α =0...π/2  is the angle between the electric field vector and the orbital plane of the 
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electron. If  the latter is randomly orientated in space,  α  would, for a large number of 
atoms,  classically  take  on  all  possible  continuous  values.   Because  of  directional 
quantization, however,  only certain discrete values are allowed. From the observation of 
spectral lines, one finds for level n  the  n  possibilities

cosαp  =  (n-p)/n            ;    p=1...n .      (44)

This gives the splitting scheme of the atomic level n in a static electric field of strength |E|

(δW)n,S
Static  =  ±  e.|E| . r0 

.  n .(n-p)          ;     p=1...n .      (45)

In the case of a time dependent electric field E||(t) fluctuating with (an average) period ∆tf 
(defined by the average time between two zero crossings of E||(t)), each shifted level will 

additionally  be  broadened  according  to  the  associated  change  of  work  ({   }=  time 
average)
                                  

    
(δW)n,B  =   ±  e . {|dE||(t)/dt|} .∆tw  . {|dr/dt|} .∆tw ,      (46)

where

∆tw =  ∆tf
.Tn / (∆tf+Tn )      (47)

is the average period of the work done on the electron due to the field fluctuation period 
∆tf  and the angular period of revolution of the electron in state n

Tn  =  1/ωn  = 

           =  √m /e  .‹r›n
3/2  ≈

      ≈ 8.6 .10-18  .n3                 [sec] ,      (48)

as one obtains classically by considering the circular frequency of an electron with orbital 

radius ‹r›n  in a neutral atom.

If the field variation is equal in magnitude to the field amplitude, then the average change 
of work becomes
          

{|dE||(t)/dt|}=  2.{|E|||}/∆tf  .      (49)

Furthermore , the projected velocity of the electron is
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|dr/dt|  =  2.‹r›n / Tn   =  r0 .n2 / Tn ,      (50

so that the energetical broadening of level n becomes

(δW)n,B  =  ±  e . 2.{|E|||}.r0 .n2  . ζn ,      (51)

with

  ζn =  ∆tf
.Tn / (∆tf+Tn )2 .      (52)

Note that ζn  has a maximum for  ∆tf=Tn  and decreases linearly with the ratio of the time 
constants  in  both  limits  ∆tf>>Tn   and  ∆tf<<Tn .   As  a  consequence  (see  Eq.(48)), 

(δW)n,B  increases  ~n5  in the first limit ('small' n) but decreases  ~n-1  in the second 

('large' n) with increasing  n. 

Due to the fluctuating field, the actual level shift  (δW)n,S  will be reduced compared to 

its static limit given by Eq.(42)  or  (45)  . Assuming that the relevant time scale which 
defines a static field is Tn , and that in the limit of  ∆tf<<Tn the reduction is determined 

by the ratio of the squares of the fluctuation field gradient  {|E|||}/∆tf  to the characteristic 

gradient   {|E|||} /Tn (thus relating it to the associated (dynamical) field energies rather 

than the field values),  one can adopt the relative splitting (or shift) factor

µn  =  1/ ( 1+(Tn/∆tf)
2 ) .      (53)

For  the  present  problem,  the  electric  field  is  neither  uniquely  determined  nor 
macroscopically directed, since it  is produced by the superposition of the fields of all 
charged particles in the plasma which are distributed randomly in space and furthermore 
are in constant motion.
Therefore, the zero order static field (obtained by integrating over a homogeneous density 
distribution) vanishes at any time instant t and only statistical  fluctuations around this 
quasi-neutrality situation occur.  
If deviations from the purely statistical field due to close encounters of charged particles 
with the considered atom are being neglected, the (unnormalized) distribution about this 
mean value is a Gaussian probability function

p( E||(t))   =
  exp[-( E||(t)/∆Ep)2] .                                                    (54)
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The dispersion value ∆Ep is the first order electric field which a single charged particle 
produces at a distance corresponding to the average separation

 rp  = ( 4π/3 .Np)-1/3      (55)

of two particles in the plasma, that is 

∆Ep  =  e/rp
2    =

         =  e .  ( 4π/3 .Np)2/3    =

         =  1.25 .10-9 . Np
2/3       [statvolt/cm   =3.104  V/m]      (56)

if the plasma density  Np  is in [cm-3] .

The average field fluctuation period associated with Eq.(55)  (which replaces ∆tf  in Eq.

(52) and (53) )  is given by

∆tp,i  = 2 rp/vi ,      (57)

where vi is the average velocity of the charged particle species i relative to the considered 

atom (the factor 2 arises from the circumstance that a particle has to travel twice the 
average distance rp in order for the resultant field to change sign).

The Gaussian field distribution Eq.(54) for species i transforms now over Eq.(51) and the 
energy-frequency relationship

(δW)n,B,i =  h . (δf)n,B,i      (58)

(with h the Planck constant) into the frequency broadening function for level n

ϕn,i(δf)   =   exp [ - ( δf/ (∆f)n,B,i )
2  ] ,      (59)

where  

(∆f)n,B,i  = 2/√π  . (∆f)0
. n2 . ζn,i            ,                  (60)

with  ζn,i   given by Eq.(52) for ∆tf = ∆tp,i  and

(∆f)0  =  0.49 . Np
2/3                  [Hz]      (61)
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if Np is  again in  [cm-3]   (the factor  1/√π  in Eq.(60)  arises from the field average in 

Eq.(51) with the distribution function Eq.(54) ). 
One should be aware that Eq.(52) will lead to a quite inaccurate representation of the line 
profile in the wings (δf>>(∆f)n,B,i  ) because of the neglection of close encounters in Eq.

(54). The exact statistical field distribution would however make an analytical treatment 
impossible, and the Gaussian profile, adequate in the line core, yields still a sufficiently 
accurate approximation for the overall behaviour of the scattering coefficient in the region 
of  blended  lines  as  well  as  giving  correct  values  for  the  equivalent  widths  of  the 
individual lines.

The presence of a second species j  of  charged particles  causes a further,  independent 
dispersion for each of the possible values of  δf, so that the resulting field distribution 
function is obtained by folding the individual distributions, i.e.

                         ∞

ϕn(δf)  ~   ∫df'  ϕn,i(f') 
. ϕn,j(f'-δf)       =           

                     - ∞

                    =   exp [ - ( δf/ (∆f)n,B)2  ] ,      (62)

where

(∆f)n,B  =  2/√π .(∆f)0
. n2 . √(ζn,i

2
   + ζn,j

2)            .      (63)

The generalization to more than two species is obviously achieved by adding the further 
contributions under the square root in Eq.(63).
(Note  that  ϕn(δf)  has  been  taken  as  an  unnormalized  function  here  because  the 

normalizable quantity is the product of the distributions for the two levels involved in a 
radiative transition).

For a plasma consisting of electrons and a single species of ions (both of density  Np), 

the field fluctuation period Eq.(57)  attains the numerical values (respectively)

        ∆te =  2rp/ve(εp)  =

       =  5.6 .10-9  /Np
1/3  /√εp             [sec]                   (64)

and

23



∆tI = 2rp/vI   =

            =  9.4 .10-5  /Np
1/3  /√ (T/A)           [sec] ,      (65)

with Np  the plasma density in [cm-3] ,  εp the average electron plasma energy in units of 

Rydberg ,  T the ion temperature in  oK  and  A the ion mass number.
With these values inserted into Eq.(52) for each species, the frequency dispersion of level 
n becomes

(∆f)n,B  =  2/√π .(∆f)0
. n2 . √(ζn,e

2
   + ζn,I

2)          .      (66)

Assuming  now a  lower  level  m  with  broadening   (∆f)m and  an  upper  level  n  with 
broadening   (∆f)n while  the  centers  of  the  Stark  shifted  levels  are  separated  by  the 
frequency  fm,n' , the atomic line absorption profile in dependence of the given frequency 

f and a fixed level shift can therefore be written as

                                          ∞

ϕm,n(f)   = 1/√π  /(∆f)*B  .∫df' ϕm(f') . ϕn(f'-f +f
m,n

' ) ,                (67)

                                             - ∞

with

(∆f)*B    =  (∆f)m,B .(∆f)n,B  / √((∆f)m,B
2 + (∆f)n,B

2) .      (68)

Evaluation of the integral yields

ϕm,n(f)  =  exp [ - (f -f
m,n

' )2  / (∆f)B
2 ]  ,                (69)

where now the abbreviation

(∆f)B =   √( (∆f)m,B
2 + (∆f)n,B

2)      (70)

has been introduced for the microscopic line broadening.
One should  note that  the atomic absorption profile  ϕm,n(f)  is normalized to the line 
center (f  =f

m,n
')  rather than the integral over frequency because of the normalization of 

∫df' ϕm(f') .ϕn(f').   

The frequency separation of the levels f
m,n

' depends on degree of static splitting of each 
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of  the  levels  which  is  determined  by  the  quantities   µm
 and  µn   (  Eq.(53))  for  the 

combined (reduced) fluctuation period for the fields of electrons and ions (replacing ∆tf 
there)

∆te,I =  ∆te
.∆tI /(∆te +∆tI) .      (71)

For a level n, the absolute frequency shift of the level centers is then

(δf)n,S  = ±(∆f)0 . n2 . µn  
. E/∆Ep ,      (72)

with  (∆f)0  (the normal frequency shift for the ground state in a field ∆Ep) given by Eq.
(61).  
Assuming  that  only  those  sub-states  with  the  same  sign  of  displacement  contribute 
significantly to the transition cross section, the frequency separation between the centers 
of two Stark shifted levels m,n can therefore be written as

f
m,n

'  =  f
m,n

 ± (∆f)0 .  γm,n 
.E/∆Ep ,                  (73)

where f
m,n

 is the original (unshifted) transition frequency between the two levels and

  γm,n 
 =   n2 . µn   -

 m2 . µm .      (74)

The macroscopic frequency scattering profile is now obtained by averaging Eq.(69) over 
the Gaussian probability distribution for the plasma fluctuation field (ensemble average) , 
i.e.
                                                                      
                                                                           ∞

 φm,n(f)  = <ϕm,n(f) >  = 1/√π /∆Ep . cm,n .∫dE  e-(E/∆Ep)2
 . ϕm,n(f)    ,  (75)

                                                                        - ∞
where  cm,n is  a  normalization  constant  which  makes  the  integral  of  φm,n(f)  over 
frequency  equal  to  1  in  the  limit  of  zero  microscopic  line  broadening  (∆f)B (thus 

normalizing only the macroscopic (ensemble) part of the profile due to the line splitting 
(∆f)S  since  only  this  is  connected  to  the  given  volume  density  of  scatterers  and  has 
therefore to be normalized).
After substitution of Eq.(73) into (69) and elementary integration one obtains the result

φm,n(f)   =  1/√π /(∆f)S . exp[ - (f -f
m,n

)2  / ( (∆f)B
2 + (∆f)S

2   )  ] ,    (76)

where now the abbreviation
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 (∆f)S   =   (∆f)0
 . γm,n      (77)

has been introduced for the static line splitting.

φm,n(f)  represents the actual macroscopic absorption profile for resonance scattering of a 

wave of frequency f by the statistically Stark broadened and shifted states m and n under 
neglection  of  further  Doppler  and  natural  broadening  (with  the  restriction  mentioned 
below Eq.(61)).
One should be aware of the different physical origin of the two contributions to its width 
(∆f)B   and  (∆f)S , since the continuous broadening associated with the latter is only a 

result of the macroscopic (volume) averaging process, whereas the former is an actual 
continuous broadening of the level of an individual atom (due to a time average rather 
than a volume average) and therefore resembles more the natural broadening of spectral 
lines . 
For  this  reason,  the  emitted  (in  contrast  to  the  absorbed)  line  is  only represented  by 
φm,n(f)  in case of a spontaneous transition between levels n and m  or for scattering of a 

wave  with  a  sufficiently  broad  frequency  spectrum.  The  line  profile  of  an  initially 
monochromatic  signal  scattered  by  Stark  broadened  and  shifted  states  is  however 
different from the absorption profile  φm,n(f)  because the scattering is coherent in the 
atoms frame and (at least if the atomic broadening (∆f)B  dominates) only the Doppler 

effect connected to the velocity distribution of the scattering atoms will affect the line 
width. The inclusion of the latter line broadening mechanism and the natural broadening 
into the absorption profile, which has been neglected in this chapter since it is not related 
to the Stark broadening , is performed separately in the next Section 2.4 where the actual 
scattering cross section is derived by folding φm,n(f) with the corresponding distributions 

and  finally  adding  the  contributions  of  all  quantum  states  in  order  to  get  the  total 
scattering coefficient for a wave of a given frequency.

A further  consequence  of  Stark  broadening  should  be  a  reduction  of  transition  cross 
sections if the level width is not small compared to the transition frequency.
For recombination into a given level n one has to assume that it is reduced if either the 
average broadening (∆f)n,B or the average splitting  (see Eq.(72))

(∆f)n,S     =    (δf)n,S (E=∆Ep)      (78)

becomes comparable and greater than the threshold ionization frequency fn  (Eq.(25),(26) 
and  (A.1.11))  from this  level,  because  then  the  discrete  level  becomes  energetically 
undefined  and blends  into  the  continuum.  Assuming  an  exponential  reduction  of  the 
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corresponding recombination cross section with the ratio of the total level broadening to 
the threshold ionization frequency, one gets the reduction factor for recombination

ηn
Rec  =    exp[ - fn  /(∆f)n  ] ,                  (79)

with

(∆f)n   =   √((∆f)n,B
2 +(∆f)n,S

2) .      (80)

In the case of discrete transitions, i.e. for resonance scattering, the efficiency factor is 
given by the degree of (non)-overlap of the two states m and n involved, which yields the 
expression

ηm,n
sc =  1 - exp[  - f

m,n
2  / ( (∆f)B

2 + (∆f)S
2   )  ] .      (81)
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2.4    Effect of External Perturbations and Wave Coherence
         on the Photoionization Cross Section 

The cross section for photoionization (Eq (A.2.4) ) is derived from the assumption of an 
ideal  radiative  transition,  i.e.  an  atom  interacting  with  an  ideally  coherent  photon 
(infinitely  long  sinusoidal  wavetrain)  with  no  time  dependent  perturbations  by  other 
electrostatic or electromagnetic sources.
It is however obvious that the ionization efficiency can not stay the same if either the 
duration (coherence length) of the wave train is shorter than the characteristic transition 
time for this process or if the electric field strength of the photon is not large compared to 
disturbing fields varying irregularly on a similar time scale, because (in contrast to a pure 
scattering process) actual work must be done on the atomic electron by the wave field in 
order to transfer it to the free electron spectrum.
The  plasma  fluctuation  field  (see  Sect.2.3)  will  therefore  affect  the  photoionization 
process if it becomes comparable in magnitude to the field strength of the incident wave. 
Assuming that the corresponding reduction will be determined by the field energy (i.e. the 
square of the field strengths) rather than the field strengths themselves, one can adopt the 
efficiency factor

β
n
(Ew)  =  Ew

2 /  (Ew
2 + ∆{E}n 

2 ) ,      (82)

where Ew is the field strength of the incident wave and 

∆{E}n   =  ∆Ep . √(ζn,e
2
   + ζn,I

2)      (83)

the effective plasma fluctuation field for the level n from which the transition originates 
(Sect.2.3,Eqs.(56), (66) ).
It is in general (although not for the results of the present paper) important that by taking 
the  field  strength  dependence  of  the   photoionization  cross  section  into  account,  one 
obtains a finite optical depth over infinite path lengths for this radiative process. This is 
because the square of the field strength of the original wave decreases in an absorbing 
(scattering) medium with distance from the centre of emission as 

Ew
2(s)  =  Ew

2(s0) .e -τn(s-s0)
 .(s0/s)2 .                  (84)

The last factor is the usual inverse square law behaviour in vacuum conditions and the 
exponential takes an absorption process related to level n into account characterized by 
the optical depth
                                   s

τn(s-s0)  = σn
0   . ∫ ds' Nn (s')  .β

n
(Ew(s') .χIon(Ew(s'))) ,      (85)

                                s0
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with  Nn   the  density  in  level  n  and  σn
0  the  cross  section  in  the  absence  of  plasma 

fluctuations ( χIon  is an additional reduction factor taking coherence effects into account 

and is derived below (Eq.(90)).
Since  β

n
 is  itself  dependent  on the  optical  depth  through Eqs.(82) and  (84),  Eq.(85) 

constitutes an integral equation in τn  which can be solved numerically.
The result  is  shown in  Fig.2 as a function of the field  independent  optical  depth  τn

0 

(β
n
=1)  for various values of the ratio 

Γ  =  Ew/ ∆{E}n      (86)

(only the effect due to β
n 

has been considered here, i.e. it was assumed that  χIon =1; it is 

evident from Eq.(90) below that the dependence on χIon  produces analogous effects with 
regard to the ratio  Tw

coh/TIon(Ew(s0)) ). For simplicity, the 'geometrical factor' s0/s has 

hereby been assumed as constant=1, i.e. the results correspond effectively to the case of 
the propagation of a plane wave. Because in this case the asymptotic solution of Eq.(85) 
for sufficiently large distances is logarithmic (as is easily verified), the optical depth over 
infinite path lengths is also infinite  (with the power of the wave decreasing inversely 
proportional with distance). For realistic geometries with a finite divergence of the plane 
of propagation of the signal,however, Ew

2(s) decreases faster than 1/s2 and the statement 
above Eq.(84) holds.

The second aspect of importance for the photoionization efficiency is the coherence of the 
wave field.  Assuming the oscillating electron always to be in phase with the incident 
wave of field strength Ew  ,  one obtains the time TIon

 required for photoionization by 

substituting the classical relationship

∆v = a(Ew) .TIon   =

       = e/m .Ew 
.TIon      (87)

into the (correspondence-like) energy equation

m/2 .(∆v)2  =  h .fw      (88)

where  fw is the effective frequency of the ionizing wave (see Eq.(97)).

After inserting the numerical values of the physical constants, one gets therefore
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TIon =  7.2 .10-18  .√fw  /Ew         [sec] ,      (89)

with fw in [Hz] and Ew  in cgs-units (statvolt/cm  = 3.104 V/m).

As long as TIon is small compared to the coherence time Tw
coh  of the wave ( time during 

which a sinusoidal waveshape is maintained to within one cycle) ,  the ionization process 
should not depend on Tw

coh and the ionization efficiency  in this case be given by Eq.
(82). Otherwise, it will be further reduced by a factor which in the opposite limit should 
be the  square  of  the ratio  of  Tw

coh  and  TIon since  the ionization  cross  section  (Eq.
(A.2.4)) depends on the square of the dipole moment which for a classical oscillator is 
proportional to the field strength of the incident wave. Over Eq.(89) this implies therefore 
also a  quadratic  dependence  on the  time  scales  involved and one  can thus  adopt  the 
coherence efficiency factor for photoionization

χIon (fw,Ew )=1/ [ 1 + (TIon/ Tw
coh)2 ] .                       (90)

Note added later: this result is only applicable if the field strength Ew of the wave is  
obtained from the intensity of light over the classical relationship Eq.(96); in this case,  
one can still make the technical assumption of the ionization time given by Eq.(89); if Ew 
is given explicitly however, the ionization time takes on a different dependence on field  
strength and frequency (see http://www.plasmaphysics.org.uk/photoionization.htm  )   .

An additional  dependence  of  the  ionization  efficiency on  the  corresponding quantum 
mechanical transition constant (which by symmetry arguments should be identical to the 
recombination constant An

Rec  ; see Appendix A.2) can not be logically excluded with 
certainty  by  means  of  theoretical  arguing  ;  from  experimental  results  it  is  however 
evident  that  even  if   Tw

coh <<1/An
Rec,  the  photoionization  cross  section  remains 

unaffected (each photon produced by a discrete atomic transition has a coherence time 
which is about 4 orders of magnitude smaller than the characteristic time for bound-free 
transitions (cf. Eq.(5)  and  (20)); the ionization efficiency for those 'discrete' photons is 
however not known to be accordingly smaller than for 'continuous' photons produced by 
radiative recombination (in fact, experimental photoionization cross sections are usually 
derived by measuring the attenuation of certain discrete spectral lines by the examined 
gas  and  they  are  also  consistent  with  ionization  efficiencies  of  continuous  spectral 
radiation)). Although this evidence might in principle be due to the circumstance that the 
electric  field  strength  of  the  radiation  field  was  high  enough  so  that  the  classical 
coherence  criterion  is  valid  (χIon ≈ 1,  which  might  be  a  sufficient  but  not  necessary 

condition for ionization to occur with maximum efficiency), it is somewhat physically 
unreasonable  to  assume  that  the  quantum mechanical  transition  constant  is  a  further 
independent reference quantity for the coherence time of the wave  , since this would 
mean  that  even  for  a  vanishingly  small  field  strength  Ew  ,  ionization  occurs  with 
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maximum efficiency as long as Tw
coh >>1/An

Rec.
Therefore, one can take Eq.(90) as the actual efficiency factor for ionization with regard 
to wave coherence , so that the total relative efficiency factor (considering the combined 
effects of plasma field fluctuations and wave coherence) is obtained as

η
n
Ion(fw,Ew)   =  β

n
(Ew) . χIon(fw,Ew ) .                  (91)

(the cross section for resonance scattering between discrete states, on the other hand, does 
not depend on the wave coherence,  since the wave is re-radiated instantaneously in a 
coherent way by the atomic electron and no work in a quantum mechanical sense is done 
on the latter).

If  the  radiation  field  does  not  consist  of  a  monochromatic  wave but  a  more  or  less 
extended  energy spectrum,  the  effective  field  strength  Ew and  frequency fw  can  be 

derived by considering the amount of energy flux which the atomic transition 'cuts' out of 
the available spectrum according to the frequency characteristics of the corresponding 
cross section.
For photoionization from level n, the total effective energy flux is given by

 
                     

           ∞

Fn   =  1/σn
Ion  

. ∫ df   Pn
Ion(f) ,                  (92)

                                 fn

where

 Pn
Ion(f)  =  F(f) . σn

Ion(f)      (93)

is the power of photoionization at frequency f  . The associated energy flux F(f) relates to 
the photon flux used in Eq.(22)  by

F(f)  =  Fph(f) . h.f      (94)

with h designating Planck's constant.

The average effective cross section for photoionization is hereby determined through

31



                           ∞                                                  ∞

 σn
Ion  =      ∫ df   σn

Ion(f)  . Pn
Ion(f)     /       ∫ df  Pn

Ion(f)  .      (95)
                           fn                                                fn

From Eq.(92) , the effective field strength is then derived by means of the well known 
relationship of electrodynamics

Ew  =  √ (Fn .8π/c) ,      (96)

with c the velocity of light.

The average effective frequency fw of the ionizing radiation , which goes into Eq.(89) is 

also determined by using the ionizing power as a weighting function, that is

               ∞                                      ∞

fw  =      ∫ df   f . Pn
Ion(f)     /       ∫ df  Pn

Ion(f)  .      (97)

                    fn                                     fn

For the resonance scattering process, on the other hand, the field strength and frequency 
are  assumed  to  be  known  here,  since  one  considers  the  scattering  of  (nearly) 
monochromatic waves.

The only unknown left (in connection with determining the photoionization efficiency) is 
the effective coherence time of the radiation field Tw

coh . Since generally this quantity is 
not provided by measurements of natural radiation sources (the solar radiation field  for 
instance), one has to make assumptions about the generation of the radiation with regard 
to its coherency, i.e. the atomic decay times for the relevant transitions and the effect of 
interfering collisions, and rely on the conservation of the coherence time if many sources 
are  being  superposed,  even  if  the  latter  are  distributed  randomly  in  space  and  time 
(numerical calculations of the field resulting from the superposition of many overlapping 
wavetrains with random relative phase shifts indicate in fact that the effective coherence 
time of the total wave field is (approximately) identical with the coherence time of the 
individual  waves,  despite  the  fact  that  the  superposition  is  statistical  and  the  total 
amplitude increases only with the square root of the number of wavetrains).
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2.5    Total Scattering Coefficient

The actual macroscopic frequency profile for resonance scattering between states m and n 
can be found be folding the Stark broadening function  φm,n(f)  with the Doppler and 

natural profile  H(a,w) (Eq.(A.1.7)). As a result one obtains the function

Φm,n(f)  =  1/√((∆f)S
2 + (∆f)D

2)   .  H(a,w(f)) ,      (98)

where

w(f)  =  (f- fm,n )/∆f ,      (99)

       a =  Am,n/  4π /∆f    (100)

with

∆f  =  √((∆f)B
2 + (∆f)S

2 + (∆f)D
2) ,    (101)

i.e. the the widths of the individual Gaussian components simply add in the usual way.
The normalization  of   Φm,n(f)  takes  into  account  that  ∆f   consists  of  a  microscopic 
(atomic,  coherent)  broadening   (∆f)B   and  the  macroscopic  (ensemble,  incoherent) 
broadenings (∆f)S

  and (∆f)D of which only the latter component has to be normalized 
(see below Eq.(75)).

The cross section related to Φm,n(f)  is obtained by substituting it into Eq.(A.1.4) for the 

function 1/(∆f)D  . H(a,w) . This yields the result

σm,n(f)  =  2π5/2 .e2/h . √(M/2kT) . ‹r›m,n
2 . gm,n 

. η
m,n

sc . H(a,w(f)) ,    (102)

with

gm,n  =  1/ √(1+ (∆f)S
2 /(∆f)D

2)    (103)

and  the  dimensionless  efficiency  factor  η
m,n

sc (which  takes  the  dependence  of  the 

scattering  cross  section  on  the  energetical  overlap  of  the  Stark  broadened  states  into 
account) given by Eq.(81).
It  is  important  that  only  the  Stark  splitting  and  Doppler  broadening  determines  the 
absolute (peak) magnitude of the cross section, the atomic Stark broadening (∆f)B leading 

only to an increase of the line width by affecting the scale of  w  (note that H(a,w)  = e-w2 
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for a<<1, which holds in most cases of practical interest) (it should again be emphasized 
(see Sect.2.3 below Eq.(61)  ) that a Gaussian or Voigt profile has in the first instance 
been chosen for the sake of convenience and does not represent the actual profile in the 
collisional line wings).

Inserting now the approximate expression for  ‹r›m,n  for large quantum numbers (Eq.

(A.1.13)), one obtains the generalized form of Eq.(A.1.15)

σm,n(f)  ≈5.1.10-12 . [1/m2-1/n2]-3.m-1.8 .(n-1)-3.2 .√(A/T) .gm,n
.η

m,n
sc. H(a,w(f))

      [cm2]                 (m,n  >>1)  ,   (104)

with A the atomic mass number and T the atom temperature in oK.
Note  again  that,  apart  from  the  explicitly  labelled  quantities,  also  the  line  profile 
parameters a and w depend upon the quantum numbers m and n, in particular through the 
line broadening ∆f.
The  scattering coefficient related to σm,n(f) is now given by

κm,n(f)  =  Nm  
. σm,n(f) ,    (105)

and the total scattering coefficient at the given frequency f is

                      ∞          ∞  

κ0(f)  =  ∑       ∑   κm,n(f) .              (106) 
m=1      n= m+1

The index 0 shall indicate that the contributions of the individual atoms are assumed to 
superpose  linearly  to  the  total  scattering  coefficient  ('incoherent'  superposition).  This 
assumption will however fail if the total effective density of scatterers for the wave of 
frequency f 

Neff(f)  =  κ0(f) /σ(f) ,    (107)

where

                                  ∞         ∞

 σ(f)  =  1/κ0(f) .∑      ∑  σm,n(f) . κm,n(f) ,    (108)
                                        m=1     n= m+1
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is such that the related average distance of scatterers 

deff(f) =   (4π/3 . Neff(f))
-1/3    (109)

is less than one wavelength λ=c/f , i.e. if the scattering is specular (or 'coherent'). In this 
case  the  scattering  coefficient  can  be  expected  to  increase  in  a  non-linear  way 
analogously to the total energy of a wave if the individual sources are being superposed in 
phase rather than incoherently.
Assuming a quadratic dependence on the parameter

δ(f)  =  λ / deff(f)    =    c/f/ deff(f) ,    (110)

the total macroscopic (effective) scattering coefficient can be written as

κ(f)  = κ0(f) . (1 +δ2(f) )    (111)

(in  the  following  results  section,  κ(f)  will  be  referred  to  as  'effective'  or  'coherent' 
scattering coefficient, whereas for κ0(f)  'atomic' or 'incoherent' scattering coefficient will 

be used ).

One should note that apart from affecting the total (integrated) scattered power as given 
by κ(f) , the quantity  δ(f) determines also the characteristics of the scattered wave field 
by the well known principles of interference optics (e.g. the so called magnetic aspect 
sensitivity  (orthogonality effect) which is observed with the scattering of radar signals 
from  the  ionosphere  (  as  a  necessary  condition  for  the  magnetic  field  to  affect  the 
scattering characteristics of electromagnetic  waves, it  is reasonable to assume that the 
local  gyrofrequency  exceeds  the  natural  width  of  the  atomic  states  involved  in  the 
scattering and eventually the frequency of disturbing collisions with other atoms ;  in the 
radio wave region and for ionospheric conditions this is certainly always the case due to 
the small values of Am,n and νn

c  for the associated quantum numbers (see Eqs.(20) and 

(7) ) ).
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3.     Numerical Results

3.1    Details of the Computational Method

The coupled system of equations determining the free electron energy spectrum and the 
density of neutral  atoms in excited states (see Sect.2.1 and 2.2) was solved iteratively 
with the numerical grid for the free electron energy scaled like the discrete atomic levels, 
that is, the energy values εk  in Eq.(38) were determined by

εk  =  1/ k2               ;  k  =1....kmax .                (R.1)

(in order to achieve a better  resolution at high energies,  additional  non-integer  values 
k=1.1 ,1.2....1.9  were added)
The maximum energy of the free electrons was therefore assumed to be 1 Rydberg and 
the minimum energy was given by the highest quantum number considered which was in 
this case  kmax=7000 , i.e.  εmin =2.10-8 .

This numerical scaling symmetry between the continuous and discrete electron spectrum 
is  justified  by  the  functional  dependence  of  the  recombination  cross  section  (which 
determines the free electron spectrum) on the bound level quantum number n and the 
continuous energy ε (see Appendix A.2). 
The  circumstance  that  Eq.(R.1) implies  only  a  relatively  low  resolution  of  the  free 
electron spectrum at high energies is not important here, since one is interested in the 
recombination  into  states  with  n>>1 which  is  primarily  due  to  low energy  electrons 
(k>>1) although the latter constitute only a small fraction compared to the bulk of higher 
energy plasma electrons.
Because a matrix of  7000.7000 coefficients is inconvenient to handle numerically and the 
physical  quantities determining them vary only relatively slowly with the bound level 
quantum number n if n is large (at least for natural conditions), the whole grid has been 
divided into four regions with different grid resolutions, namely

∆n =  1          if   1≤n<10
∆n =  2          if   10≤n<40
∆n =  20        if   40≤n<2000
∆n =  100      if   2000≤n<7000                (R.2)

and the  same division  was taken for  the  continuous energy numbers  k,  ∆k (with  the 
exception k<2;  see below Eq.(R.1)).
With the coefficients and densities assumed constant between two points, this defines a 
step function of 173 intervals for the discrete and 182 for the continuous energy spectrum, 
which turns out to result in a relative error for the electron density distribution function 
fe(ε) and the excited atom densities Nn  of about 20% at each point (this corresponds to 

the  change  of  the  densities  within  one  unresolved  interval  ∆n;   a  higher  numerical 
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accuracy could be achieved by decreasing  ∆n accordingly,  but this would be pointless 
here considering the fact that the numerical expressions for the atomic cross sections and 
decay constants  have been derived by means of inter- and extrapolations of only a few 
explicitly calculated values and are unlikely to be more accurate than this throughout (see 
Appendix A)).
About 10 iterations were necessary in order to make the solution  converge numerically to 
within an error of less than 10%.
It should be mentioned that for all calculations presented in this paper, the free electron 
spectrum turned out to depend only on the 'pre-bound' densities Nn but not the actual level 
densities Nn (with n>=2) which are too low to cause any significant production of free 

electrons due to ionization at any energy. In principle, the bound levels could have been 
therefore excluded from the iteration procedure (calculations for some extreme (although 
unrealistic  in this  context)  ionizing  radiation  flux spectra  showed however  that  under 
certain circumstances there can be some effect at certain energies of the free electron 
spectrum, therewith justifying the formal coupling of the whole system of equations as 
illustrated by Fig.1).  Due to the course grid resolution implied by Eq.(R.2) , conservation 
of  electrons  within  the  cascading  scheme  given  by  Eqs.(19) and  (30) could  not  be 
achieved with a sufficient accuracy. The total recombination rate into the ground state q1 , 
which  defines  the  ionization  equilibrium  through  Eq.(35),  was  therefore  simply 
determined by adding up the initial  recombination  into all  levels,  that  is  q1=Σqn

Rec  , 
taking advantage of the above mentioned circumstance that only a negligible amount of 
the total number of recombined electrons become re-ionized before having cascaded into 
the ground state.

The final summation of the contributions from all levels to the total atomic scattering 
coefficient(  Eq.(106))  was performed by first  adding up all  transitions  between states 
n,n+1 (n1- or nα-transitions) then with n,n+2 (n2 or nβ) and so on.  This method provides 
a better convergence, since the scattering cross section decreases rapidly with increasing 
m for n,m transitions (as it follows from Eq.(104)  ). The actual number of transitions 
which has to be taken into account in order to achieve a given accuracy depends strongly 
on the assumed physical parameters, in particular the plasma density and the related level 
broadening as well as the considered wave frequency. If the latter is in the continuous 
region of the scattering coefficient (which is for instance the case for  f<1GHz  if  Np = 

105 cm-3  ;  see Sect.3.4,  Fig.12), it is sufficient to add up n1-n3 transitions in order to 
achieve an error of less than 10%, whereas in the line region (f>500 MHz  if  Np = 104 

cm-3  ; see Fig.11) n1-n10 transitions have to be taken into account ( the general tendency 
is therefore an increase in the number of contributing transitions with decreasing plasma 
density and increasing wave frequency).

In order to avoid confusion when discussing the dependence of the results on the total 
plasma density  Np , the values for the mass and temperature of neutrals and ions (which 

are assumed to be identical)  have been kept constant throughout, namely  A=32  and 
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T=300 oK. This is appropriate for the lower ionosphere from where the measurements of 
scattering  coefficients  used  for  comparison  with  the  theoretical  results  have  been 
obtained.   The circumstance that  these values are not in any case consistent  with the 
assumed  plasma  densities  if  referred  to  the  ionosphere  is  only  of  minor  importance 
because the results are only weakly dependent on A and T.  For ionospheric F2- region 
conditions  for  instance  (A=16,  T=1200  oK),  the  only  effect  would  be  to  reduce  the 
scattering coefficient by a constant factor 0.6 due to an according depletion in the excited 
atom densities.
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3.2     Plasma Electron Distribution Function

Fig.3 shows  the  normalized  electron  energy  spectrum fe(ε)  (as  defined  in  Sect.  2.2) 

appropriate for lower ionospheric conditions (Np = 105 cm-3 ,  εp=0.5 Ry,  T=300oK, 

A=32; see also remarks at the end of Sect.3.1) (thick solid step function). The dashed step 
function gives the electron spectrum when neglecting all elastic collisions, i.e.  only the 
primary production rate q1 and the (undisturbed) recombination frequency  νT,k

Rec,0  (thin 

solid curve, left ordinate) are hypothetically assumed to determine the spectrum (see Eq.
(38)). It is evident that elastic collisions are the dominant production mechanism apart 
from the highest energies (ε>0.1) where the primary production q1  (photo- and electron 
impact  ionization)  dominates.   Within  the  elastic  scattering  domain,  one  can  further 
differentiate  into free-free scattering of electrons and scattering out of the 'pre-bound' 
state  n.  The  former  is  dominant  for  energies  greater  than  the  characteristic  energy 
corresponding to  the quantum number  n* (Eq.(31))  where the recombination constant 
An

Rec   (dashed-dotted line, left ordinate) and the elastic collision frequency  νn
c  (thin 

dashed line) become equal (the upper abscissa gives the quantum number scale which is 
related to the energy scale through  ε=1/ n2 ), whereas the latter is dominant for energies 
smaller than this. Only in this region does  fe(ε)  depend on the total plasma density at all 
(i.e.  is  the  specific  electron  density  Ne(ε)  a  non-linear  function  of  the  total  plasma 

(electron) density  Np ). A comparison with Figs.4 and 5 (Np = 104 cm-3 and 106 cm-3 

respectively)  indicates  a dependence  fe(ε)  ~  Np
0.23   (which can be attributed to the 

function  αn
Rec,c   ,  see Eq.(31))  in the energy region where recombination is not yet 

affected by plasma field fluctuations (see Sect.2.3)   and  ~  Np
0.4   for energies even 

smaller than this (corresponding to the saturation region of the recombination frequency 
νT,k

Rec,0  ).
One should furthermore note that for energies  ε<<1 ,   νT,k

Rec,0    is (for the given ion 

mass and temperature;  see Eq.(A.2.17)) always large compared to the elastic collision 
frequency  νn

c   (which is effectively equal to the free-free loss frequency  νk,L
c  (Eq.

(B.18)) ), i.e. the loss rates at a given electron energy are almost exclusively determined 
by recombination. This means that the differences in  fe(ε) for different plasma densities 
are only caused by differences in the production rates due to elastic scattering out of the 
'pre-bound' state n.   Only for much higher ion temperatures and/or smaller masses does 
the recombination cross section become small enough so that elastic collisions dominate 
the loss rates also for  ε<<1 with the consequence of  fe(ε) being much closer to 1 in this 
region.
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3.3    Excited Atom Densities

With knowledge of the plasma electron distribution function  fe(ε) (or equivalently the 
specific electron density  Ne(ε) ) the production rate qn  and thus the excited atom density 

Nn  can be calculated (Sect.2.1). For the conditions valid for Fig.3 (Np = 105 cm-3 ) the 

result is shown in Fig.6.
The thin solid curve gives the production rate qn  (left ordinate, to be multiplied by 105 ) 

as a function of  n  (lower abscissa, taken as a continuous variable here), with the close 
dashed-dotted  curve  showing  the  initial  production  rate  qn

Rec (i.e.,  neglecting  the 

cascading rate qn
casc) 

One can distinguish two regions of the production rate function :   for levels n lower than 
n*  (see  Eq.(31) and  previous  paragraph  3.2;   n*≈50  here),   the  recombination  rate 
decreases approximately in proportion with the narrowing of the continuum energy range 
from which electrons can recombine into level n  (∆ε~1/n2), whereas for higher levels, 
where collisions become important,  the recombination rate decreases even much more 
rapidly with increasing n due to the additional reduction factor αn

Rec,c   ( ~n-6.4) (see Eqs.
(9) and (14)).
The loss frequency νn

loss   is given by the thick short dashed curve (right ordinate). It is 
the sum of the decay constant An  (long dashed) which is dominant below a quantum 
number of n≈350 in this case, the collisional ionization frequency νn

c ( short-dashed line) 
which  dominates  for  n>350  and  the  photoionization  frequency  νn*  (dotted  curve) 
corresponding to an average (quiet conditions ; Fsol =1)  solar radiation flux which turns 
out  to  be  unimportant  for  all  n  although  at  about  n=300 it  comes  close  in  order  of 
magnitude to both An and νn

c .
By taking the ratio of the production rate and the loss frequency, one obtains the level 
population Nn  (thick solid curve). It increases from n=2  to  n=n* because the decay 
constant An   decreases more rapidly with n than the production rate (the steep increase 
from n=2p to n=1 indicates only schematically the much higher density in the ground 
state with A1=0,  since it is not self-consistently contained in the level rate equations). 
Only in this region does qn

casc  become significant (the cascading rate is of the same order 

of magnitude here as the primary production rate qn
Rec ), because the rapid increase in Nn 

with n can compensate for the low densities and small cascading probabilities. 
A comparison with the solution for other plasma densities (Figs.7 and 8, note the absolute 
scale) shows that  Nn~ Np

2   for n<n*,  Nn~ Np
  for  n*<n<nc  (where nc  is the level at 

which the collisional ionization frequency  νn
c  becomes dominant (≈350  Np = 105 cm-3 

) )  and Nn independent of  Np  for n>nc .  

It is important that with a solar radio flux much higher than the quiet sun flux (as it occurs 
for instance during a solar burst),  the photoionization frequency  νn* can become the 
main loss process for high quantum numbers (where usually collisions are dominant) and 
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the  dependence  of  Nn on  Np   will  then  also  be  linear  there  (  Fig.9 shows  the 

photoionization  frequency  and  corresponding  excited  atom  density  for  the  strongest 
observed solar bursts (Fsol

Burst  =1, 'Type IV', see Fig.10) for a plasma density of  Np = 

105 cm-3  (compare to the quiet solar conditions of Fig.6)) (note that this is an equilibrium 
consideration and that much smaller changes in the radiation flux may be sufficient to 
produce  short  term non-equilibrium variations  of  the  same  magnitude;  this  argument 
holds also for the collisional ionization frequency νn

c  ;   see Sect.3.5 for a more detailed 
discussion of the non- equilibrium aspect).
In both cases (quiet and enhanced solar flux), the efficiency factor for photoionization 
(Eq.(90)) was calculated by assuming the coherence time Tw

coh  of the solar radiation 
flux to be determined by elastic collisions in a plasma of a density  Np

sol = 108 cm-3 

which is appropriate for the lower solar corona. Since the frequency fw of the emitted 

radiation is approximately related to the quantum number n over (twice) the threshold 
frequency fn  (Eqs.(25),(26)),  the coherence time is therefore given by the associated 

collision frequency νn
c  (Eq.(7)) for the plasma density Np

sol , i.e.

Tw
coh (fw)  =  1/νn

c  (Np
sol)

                  = 7.7.107 .√(fw/6.6.1015)  . εp/Np
sol           [sec] ,              (R.3)

where fw (as defined by Eq.(97)) has to be taken in [Hz] and  Np
sol in    [cm-3]. The 

average plasma (electron) energy was chosen to be identical with the ionospheric value 
 εp= 0.5.

For frequencies higher than about 104 MHz, the quiet sun radiation flux of  Fig.10 was 
extrapolated  by means of the the power law  F(f) ~ f1.85   (see Eq.(94)) which yields 
consistency with measurements of the solar spectrum in the optical region (Unsöld, 1955, 
p.34). A crude exponential interpolation was then applied between the maximum of the 
solar spectrum and the far UV -region, where the flux for the latter was taken from Rees 
(1989) (p. 9). With this, the photoionization frequency  νn* (Eq.(22)) could be calculated 
consistently for all states n=2.
As a general aspect arising from the results presented in the last two sections, one should 
note that both for the continuous and discrete electron energies, the derived densities are 
in no way related to  some kind of thermal  equilibrium.  In the light  of the consistent 
detailed  equilibrium  theory  developed  in  this  paper,  it  is  in  fact  hard  to  see  how 
approaches based on Saha-Boltzmann statistics, which are widely if not exclusively used 
in  areas  as  astrophysics,  plasma physics  etc.,  could  be connected  to  it  and  yield  any 
physically  reasonable  approximation  to  the  true  situation  or  only order  of  magnitude 
estimates thereof.  Such concepts should therefore be abandoned and replaced by detailed 
equilibrium approaches like the one presented in this paper.  In the case that one has to 
consider time dependent situations which vary significantly within the longest time scale 
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entering into the problem , it becomes of course even necessary to generalize the rate 
equations to time dependent expressions (see end of Sect.2.1 and Sect.3.5 for a qualitative 
discussion of the non-equilibrium aspect).
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3.4    Equilibrium Scattering Coefficient for Radio Waves

3.4.1    Atomic  (Incoherent)  Scattering Coefficient

The total atomic scattering coefficient for a radio wave of frequency f is obtained from 
the excited atom densities calculated in Sect.3.3 via Eqs.(105) and (106) (and preceding 
formulae).  In  Figs.11,  12,  and 13 the  result  for  κ0(f)  (thick  short-dashed  curve,  left 

ordinate) is plotted for radar frequencies from  820 KHz to 1.9 GHz for those plasma 
densities discussed in Sects.3.2 and 3.3 (undisturbed conditions).
The frequency dependence of the atomic scattering coefficient is strongly determined by 
the  line  frequency  broadening  ,  which  is  shown  here  by  the  thin  solid  curve  (right 
ordinate)  for the case of nα (n→n+1) -transitions  as a function of n (upper abscissa, 
which is scaled such that the frequency of the related nα -transition matches the radar 
frequency (lower abscissa)).
Three different domains can be distinguished (see in particular Fig.11):   
1)  an almost frequency independent region corresponding to scattering by states which 
are broadened in excess of the level separation (long-short-dashed line, right ordinate) 
(level continuum);     
2)  a  f -2  region related to levels which are well separated but broader than the frequency 
difference  between  two  neighboring   (nα,  (n+1)α )  -lines  (long-dashed  line)   (line 
continuum);
3)  a region where the broadening is smaller than the line separation and the individual 
lines become visible (discrete line region).
The functional behaviour in region 2 is explained by the increasing number of lines able 
to get into resonance with the given frequency f as the latter decreases and probes higher 
(i.e. more closely spaced) levels with an increasing collisional broadening.
Once  the  frequency  (long-short-dashed  line)  gets  smaller  than  the  level  broadening, 
however, all lines with a resonance frequency below this 'critical' frequency scatter the 
wave and the atomic scattering coefficient becomes constant (region 1 ;  this is effectively 
the limit   f<<fm,n<<√((∆f)B

2+(∆f)S
2)   in Eq.(76), which makes the scattering profile  φ 

independent of f ;   it should be noted in this context that for the considered frequencies, 
i.e the corresponding states n, the line broadening is only determined by the component 
(∆f)B which is related to the actual collisional level broadening , whereas the apparent 
line broadening due to a further static level shift (∆f)S  (see Sect.2.3) is only dominant for 

much smaller quantum numbers (=60 for the conditions considered here) and therefore 
higher frequencies).
In region 3, the dominant lines are formed by the nα-transitions, which have the largest 
scattering cross section (σn,n+∆n~∆n-3  ,  as  it  follows from Eq.(104))  and the smallest 

broadening (because they are  associated with smaller  quantum numbers  than nβ-  and 
higher order transitions in the same frequency region). With increasing radar frequency, 
the number of orders of lines (nα, nβ....) which become visible increases, the rest of the 
lines forming a quasi-continuum with the lower order lines superposed (see Fig.14  for a 
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frequency range of 900-1000 MHz and a plasma density of 104 cm-3   (κ0(f)  and  κ(f) 

coincide here);  the small peaks at 975.6 MHz and 988 MHz are for instance due to the 
237β- and 236β-  transitions respectively;  note however that the wings of the lines are 
quantitatively  not  correctly  reproduced  by  a  Gaussian  profile;  the  actual  scattering 
coefficient may therefore be somewhat higher between the line peaks (see Sect.2.3 below 
Eq.(61) )
One should note that the 'continuum' formed by the blended higher order lines shows also 
the  ~f  -2  decrease  with  frequency  which  is  characteristic  for  region  2,  whereas  the 
completely resolved lines  have approximately equal  peak amplitude  in  this  frequency 
region, because for quantum numbers n>n* (see Eq.(31)) the increase in the scattering 
cross section with increasing n (~n4   for transitions between neighboring states) is just 
compensated by the decrease of the level densities Nn (see Fig.7).

Concerning the dependence of the atomic (incoherent) scattering coefficient on the total 
plasma  density,  it  is  evident  from  Figs.11,  12,  13 that  κ0(f)  shows an  (approximate) 

proportionality to Np  only for frequencies near the transition from region 1 to 2 (≈50 - 

200 MHz for those densities considered here).
In  region  1,  κ0 is  a  weaker  function  of   Np (~Np

0.4  )  since the density  Nn   of  the 

responsible  (high)  levels  is  almost  invariable   (  the  relevant  levels  are  within  the 
collisionally determined regime; see Sect.3.3, Figs.6, 7, 8), but also because the increased 
broadening with higher  Np is assumed here to lead to a reduction in the scattering cross 

section if the levels are blended into each other (as it is just the case in region 1).
In region 2 , on the other hand, the dependence is stronger than linear (~Np

1.4  ). For 

frequencies located between the dominant line peaks in region 3 (that is, in its 'continuum' 
part) the dependence may be even stronger because the increase in the line broadening 
related to an increase in  Np  can bring the frequency point from the line wing close to the 

line center of the dominant line, an effect which adds to the ~Np
0.7 increase of κ0  in the 

line center  (  see  Figs.14 and  15 where  κ0 increases  by about  2 orders of magnitude 

between the nα- line peaks as Np changes from 104 to 105 cm-3 (as already mentioned 

above , the line profile differs significantly from the assumed Gaussian function in the 
line wings (see Sect.2.3, below Eq.(61)) and the actual relative increase may therefore be 
somewhat less)  ).

Fig.16 has been added here in order to justify the above argumentative use of the nα-
transitions to explain the behaviour of κ0 with frequency. It shows that they contain in 

fact all the features of the total scattering coefficient and amount at least to 50% of its 
absolute magnitude apart from frequencies between the nα- peaks in region 3 (compare to 
Fig.12).
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3.4.2   Effective Density of Excited Atoms at a Given Frequency

The  scattering  coefficient  κ0(f),  as  given  by  Eq.(106)  and  discussed  in  the  previous 

section,  is related to an effective density of excited atoms for the wave of frequency f 
through Eqs.(107) and (108).
From the results displayed in  Figs.11,  12 and  13 one derives in this way the effective 
density  Neff(f)  as shown in  Figs.17,  18 and  19 respectively  (thick solid curve, left 
ordinate).  It is evident that for frequencies in region 1 and 2 (that is, in the  'continuum ' 
part of the scattering coefficient where the line broadening (thin solid curve in Figs.11-13 
) exceeds the line separation (long-dashed line in  Figs.11-13) )  the effective density at 
frequency f is much higher than the number density  Nn (thin solid curve in Figs.17-19) 
of those levels  n  associated to f by the frequency relationship for  nα− transitions (upper 
abscissa).  In region 2, the ratio of the two curves for a given point on the abscissa can 
thus be interpreted as the number of levels able to scatter the wave of the given frequency 
(this is not possible in region 1, since scattering is here by all states higher than the state 
where the  level  broadening  exceeds  the level  separation,  and quantum number  n and 
frequency f are therefore not directly related anymore).

The 'scattering coherence' parameter δ(f) (Eq.(110)) is shown in Figs.17-19 as the dashed 
curve (right ordinate). Remarkably, the transition between the optically different regions 
of 'incoherent' (δ(f) <1 ) and 'coherent' (specular) scattering (δ(f) >1)  occurs just within 
the frequency range considered here, i.e. for frequencies usually applied for probing the 
ionosphere.  With  increasing  plasma  density  the  critical  frequency  shifts  to  higher 
frequencies (≈250 MHz  if Np = 104 cm-3 , 700 MHz  if Np = 105 cm-3,  2 GHz if Np = 

106 cm-3 ). Relatively small variations of Np may therefore bring a given frequency from 
one characteristic region into the other and change the backscatter efficiency considerably 
in a non-linear way. 
One  should  again  be  aware,  however,  that  these  are  considerations  based  on  the 
assumption of a time independent equilibrium situation and that changes in the plasma 
density will  not immediately be reflected in the scattering coefficient  since it  takes a 
considerable time until the additional free electrons have recombined into excited atomic 
states.  More important are therefore probably time dependent non-equilibrium effects 
due to increases  in the loss frequencies   νn

c  and (or)  νn*  (see end of Sect.2.1 and 
Sect.3.5).
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3.4.3    Effective (Coherent) Scattering Coefficient 

The  effective  (coherent)  scattering  coefficient  κ(f)  is  obtained  from  the  atomic 
(incoherent)  scattering  coefficient  κ0(f)  (see  Sect.3.4.1)  and  the  parameter  δ(f)  (see 

Sect.3.4.2) by means of Eq.(111).  In Figs.11, 12, 13 it is shown as the thick solid curve. 
It is evident that  κ(f) becomes strongly enhanced over  κ0(f) with decreasing frequency 

due to  the increasing  value of  δ(f)  >1.   The  existence  of  three  different  regions  (see 
Sect.3.4.1) is still preserved, with the constant region 1 of  κ0(f) changing to a f-2 slope 

and the f-2  behaviour of κ0(f) in region 2 to f-4.  In region 3 both curves coincide, which 

is due to the accidental circumstance that δ(f) becomes smaller than 1 at about the same 
frequency where the line separation begins to exceed the line broadening.
It is furthermore evident from the figures that κ(f)  depends much stronger on the plasma 
density than κ0(f)  because of the additional dependence of δ(f) on Np  (~Np

1.2
  in region 

1 , ~Np
2.2  in region 2 and between the nα -lines in region 3  and ~Np

0.9 in the centers of 

the nα-lines in region 3  ).
Interestingly, κ(f) yields an optical depth >1 for the ionosphere for frequencies in the HF 
region and lower ( f< a few MHz)  (for Np = 105 cm-3  and f=4 MHz,  τsc=1 would be 

reached within a distance of 10 km). This means that for those frequencies the ionosphere 
becomes opaque and (in the limit of large optical depths) totally reflective.

A comparison of κ(f) with the experimental determination by Moorcroft (1987) (Fig.20, 
the  absolute  values  can  be  compared  directly)  shows  quite  a  good  agreement  for 
frequencies from 30 MHz to 1.2 GHz if one drops Moorcrofts assumption that κ(f) can be 
represented by a simple power law and includes the measured values for the lowest and 
highest frequencies which have been excluded from Moorcrofts least  square fit.   One 
should  hereby  note  that  an  exact  agreement  would  be  rather  accidental,  because  the 
experimental  determination  is  subject  to  several  uncertainties  (note  Moorcrofts  title 
'Estimates of...'). In particular is the assumption of an isotropic scattering phase function 
not consistent with the 'orthogonality effect' (magnetic aspect angle dependence) which is 
always associated with radar backscatter as long as one has 'specular' scattering (δ(f)>1) . 
This could lead here to an overestimation of the backscatter coefficient by a few (up to 4, 
most likely 2-3) orders of magnitude. On the other hand, destructive interference of the 
contributions of scattering atoms along the line of sight could reduce the received power 
by a similar amount which only accidentally would cancel with the first effect. 
In view of the compatibility of the theoretical (as obtained with the present approach) and 
experimental  determinations of  κ(f),   it  seems therefore to be doubtful that  any other 
mechanism than resonant scattering by atomic Rydberg states (i.e. the well known diverse 
'coherent' and 'incoherent'  backscatter 'theories') could be relevant at all for explaining 
the scattering of radio waves in general.
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3.4.4   Further Discussion of the Level Broadening

It is worthwhile to have a closer look at the level broadening as a function of the quantum 
number  (thin  solid  curve  in   Figs.11,  12,  13 ),  since  this  is  the  crucial  quantity 
determining  the  scattering  coefficient.  As  indicated  at  the  end  of  Sect.3.4.1,  the 
broadening (which is only due to the component (∆f)B  for those n values of interest here 

(see remarks in Sect.3.4 and Eq.(76) and following) ) increases strongly with n (~n5 ) if n 
is small enough so that Tn is small compared to the shortest plasma fluctuation time scale 
which is in this case  ∆te   (Eq.(64)). If only electrons would be present, the broadening 

should reach a maximum with increasing n at a quantum number where the usual ~n2 

increase of the broadening is  just  compensated  by the function  ζn  (see Eq.(60);   this 

happens at about  2.ne  if ne  is the state where  Tne
= ∆te ) and then decrease with a ~1/n 

behaviour in the limit  Tn>> ∆te  as it follows from Eqs.(52) and (60).  The presence of 

ions, however, changes this picture since an additional characteristic fluctuation period 
∆tI  (Eq.(65)) is introduced, which leads to a superposition of the individual broadenings 

as given by Eq.(66) with the consequence of a strong increase in the broadening as soon 
as the ion component becomes dominant. If n becomes so large that Tn>∆tI, also the ion 
broadening becomes saturated and eventually decreases again ~1/n if  Tn>>∆tI    ( for the 
plasma densities considered here, the ion broadening exceeds the electron broadening for 
quantum numbers of the order of n>1000  which is here however without any significant 
consequence for the scattering coefficient at the corresponding nα-transition frequencies, 
since the broadening exceeds the level separation already for smaller n (> 500-700) so 
that all lines corresponding to levels higher than this contribute anyway with their  (close 
to -) line center cross section. Apart from this, scattering by levels blended into each other 
because of collisional broadening is here supposed to be strongly reduced (see discussion 
in  Sect.3.4.1  concerning  the  interpretation  of  the  atomic  (incoherent)  scattering 
coefficient in region 1)  ).
It  should  be  noted  that  it  is  of  course  only  accidental  that  the  electron  dominated 
broadening reaches its maximum close to the same quantum number where it exceeds the 
level separation (at about n≈500 for Np = 105 cm-3).  With a different bulk energy of the 

plasma electrons than 0.5 Rydberg for instance , the maximum  shifts to different values 
of n because the fluctuation period ∆te (Eq.(64)) changes.

With  regard  to  astrophysical  applications,  it  is  interesting  that  the  observed width  of 
emission lines in the radio spectrum of HII - regions has about the same value as one 
would  expect  from  the  Stark  broadening  due  to  plasma  field  fluctuations  for  those 
conditions. This is evident from Fig.21 which shows the H157α  - line at 1.6832  GHz 
emitted from the Orion nebula (Pankonin, 1980, p. 121)  (the halfwidth corresponds to 
about  100  kHz  if  transformed  into  frequencies)  and Fig.22 giving  the  theoretical 
scattering profile for this line as one would expect it from Stark broadening in a plasma of 
Np = 2.103 cm-3 (this is thought to be the highest plasma density in the Orion nebula 
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(Lang, 1974, p.121)).  Note that the resultant (half) line width of about 75 kHz is solely 
due  to  the  Stark  broadened  atomic  levels  ,  since  a  temperature  of  10  oK  has  been 
assumed here which yields a negligible thermal Doppler broadening compared to this.   It 
is therefore likely that the commonly accepted interpretation of the line broadening in 
HII- regions as a thermal effect (which implicates temperatures of about 104 oK ) is at 
least in some cases incorrect.
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3.4.5   Dependence of the Scattering Coefficient 
           on the Ionizing RadiationFlux

As already indicated in Sect.3.3,  the excited atom density  Nn  , and therewith also the 

scattering  coefficient  κ,   depends  on the  ionizing  radiation  flux  if  the  latter  leads  to 
photoionization frequencies  νn* which are greater than the decay constant An  and the 

collisional ionization frequency  νn
c  .  For the case of the earths ionosphere, the solar 

radiation flux corresponding to quiet (normal) conditions  is just not strong enough to 
affect the equilibrium densities significantly (see Fig.6) (only for plasma densities as low 
as Np = 104 cm-3  it might become moderately relevant; see Fig.7  for quantum numbers 

n=500-1000).  During times of enhanced solar activity however,  the radio flux increases 
by orders of magnitude in particular  at  low frequencies (see  Fig.10) and the resultant 
photoionization becomes the dominant loss process for levels n≥300 , thus reducing  Nn 
for those states.  Fig.23 shows the result for  κ0(f) and  κ(f) for the strongest (Type IV) 

solar bursts observed and a plasma density of  Np = 105 cm-3  (that is, corresponding to 

Fig.9)) which has to be compared to the quiet conditions scattering coefficient of Fig.12. 
It is evident that the scattering coefficient is significantly reduced for  f<200 MHz   (by 
about a factor 0.5 for f =100 MHz and a factor 0.2 if f =1 MHz). With a plasma density of 
Np = 104 cm-3  (which may be even more appropriate for the lower ionosphere), the 

effect is even more dramatic and results in a more than 2 orders of magnitude decrease in 
κ(f)  for  f<10 MHz  with the related optical depth changing from optically thick to thin 
for frequencies around 1 MHz (see Fig.24 in comparison to Fig.11 ).
Since κ(f) is a direct measure of the reflectivity of the ionosphere, it is a straightforward 
conclusion to relate this effect to the so called short wave fadeout which is observed for 
the transmission of radio waves between frequencies of 500 kHz and 10 MHz  after the 
onset of a solar flare (burst) (Mitra, 1974; pp. 5, 27) .  The almost simultaneous fading of 
the signal with the increase of the solar radio flux at frequencies f≥600 MHz (Fig.25) is in 
fact  consistent  with  the  assumption  that  photoionization  of  highly  excited  states  is 
responsible for this effect, since the photoionization frequencies are so high (see dotted 
curve in  Fig.9) that the Rydberg atoms become ionized within fractions of a second for 
the strongest bursts. It is therefore not a 'curious requirement' (Mitra, 1974, p.93) that a 
threshold solar radio flux is needed for 'Sudden Ionospheric Disturbances' to occur, but an 
expression of the fact that only above a certain value of the radio flux the photoionization 
frequency νn* is high enough (in comparison to the collisional ionization frequency νn

c ) 

to affect the population number of atoms in high Rydberg states significantly and cause 
the reflectivity of the ionosphere to change.
Obviously,  the  same  'fadeout'  effect  can  be  achieved  artificially  by  illuminating  the 
relevant  region  of  the  ionosphere  with  a  sufficiently  powerful  radio  signal  of  the 
appropriate frequency. In this sense, Fig.26 gives (in comparison to Fig.12)  the scattering 
coefficient for a plasma of density  Np = 105 cm-3  subject to an ionizing microwave 
radiation with a frequency of  fw* = 35 GHz  and a field strength of Ew* = 0.2 V/m at the 
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location of scattering.   For frequencies   f<200 MHz the scattering  coefficient  is  here 
reduced by about 2 orders of magnitude because of the strong additional loss of electrons 
in states n higher than the threshold level √(3.2898.1015 Hz /fw*)  (≈300 here) ( Fig.27, 

thin  solid  curve in  comparison  to  Fig.18 ;  see Eq.(24) and following for the relation 
between threshold frequency and quantum number   (the small  scale variations in the 
curve for n>300 are not real but of a numerical nature due to the finite grid resolution and 
the almost monochromatic microwave frequency spectrum).

It  should  again  be  emphasized  that  these  are  equilibrium results,   i.e.  in  both  cases 
(natural or artificial) will the observed effects be even much stronger if one considers 
times after the increase of the radiation flux which are short compared to the equilibrium 
relaxation time (this is of the order of several hours for ionospheric plasma densities and 
the frequencies considered here;  see Sect.3.5).  For this reason, only a relatively small 
increase in the ionizing radiation flux is needed to produce a short term non- equilibrium 
reduction of the scattering coefficient comparable in magnitude to the equilibrium effects 
shown here.
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3.5    Non- Equilibrium Considerations

All  numerical  results  presented in  chapter  3  are  based on the initial  assumption  of a 
detailed balance equilibrium. As already indicated at the end of Sects.2.1 , 3.3, 3.4.2  and 
3.4.5,  they are therefore only strictly valid if the considered physical  conditions vary 
slowly compared to the longest characteristic time constant entering into the problem.  It 
is obvious that for instance a variation in the total density of free plasma electrons  Np 
will  not  lead  to  a  different  scattering  coefficient  for  radio  waves  until  it  causes  a 
corresponding change in the level densities Nn . On the other hand, a sudden removal of 
electrons in the excited atomic states (by means of photo- or electron impact - ionization 
for instance)  will be related to an instantaneous drop in the scattering coefficient which 
will then only gradually  return to its equilibrium value as the states are re-populated from 
the free electron spectrum.  For level n this takes (on the statistical average) a time  1/
An

Rec  (Eq.(5)) which amounts from about 1 to many hours for the states of interest here. 
With variations in the bulk plasma parameters (total electron density and mean energy), 
there  is  even  a  further  delay  1/ν0

c  (see  Appendix  B,  Eq.(B.23)  )  until  the  change 
becomes  apparent  (by  means  of  elastic  collisions)  at  electron  energies  which  are 
responsible for the recombination into those levels  n of interest  here. For ionospheric 
plasma  densities,  the  collisional  time  scale  becomes  dominant  if  n<150,  whereas  for 
larger n (which covers those states relevant for the numerical results for the scattering 
coefficient presented in this work), the recombination time scale is larger and determines 
therefore the time dependent behaviour (one should again realize that  1/An

Rec  is the 
duration of the quantum mechanical recombination process (the effective life time of the 
'pre-bound'  level  n  ,  see  Sect.2.1  and  Fig.1)  which  has  to  be  distinguished  from the 
recombinative collision time for the free plasma electron which is given by Eq.(17) and is 
much shorter than  1/An

Rec  for the levels and plasma densities of interest here and is in 
particular always smaller than the time for elastic collisions  1/ν0

c for the ion mass and 
temperature assumed here (see Eq.(A.2.9)).

The long time scale associated with the establishment of an equilibrium between the free 
and  bound  electron  spectrum  enables  considerable  deviations  from  this  equilibrium 
situation over time scales short compared to this , as indicated above . This could be one 
of the reasons that one observes for instance sometimes orders of magnitude variations in 
radar  backscatter  from   the  ionosphere  within  a  few  minutes   or  gets  an  almost 
instantaneous fading of radio signals transmitted over the ionosphere (short wave fade 
out) after the onset of strong solar flares (see also Sect.3.4.5).
It  is  therefore evident  that  a time dependent  approach has to be formulated  if  one is 
interested in a time resolution which is better than the characteristic time scales  1/An

Rec 

and 1/ν0
c . In the context of ionospheric physics this is certainly predominantly the case 

unless one is dealing with data sets integrated or averaged over several hours or more. In 
the latter case, the detailed equilibrium theory used in this paper should, apart from giving 
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general insight into the relationship between the relevant physical quantities, also yield 
quantitatively correct numerical results (see for instance the discussion of the theoretical 
and experimental radar scattering coefficients in Sect.3.4.3).
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4.    Concluding Remarks and Outlook

The results obtained with the present detailed equilibrium approach show that commonly 
used methods to calculate excited atom densities, which are always related to some kind 
of LTE- assumption, can not even approximately describe the actual situation which is 
strongly determined by the quantum mechanical cross sections and time constants of the 
individual levels.  Any theory which does not proceed from these atomic properties (e.g. 
the  usual  statistical  equilibrium  approach)  is  therefore  a  priori  invalid  and  must 
necessarily  lead  to  wrong conclusions.   This  may  be  the  reason why the  process  of 
resonance scattering by high atomic  Rydberg states has not  yet  been considered as a 
possible mechanism affecting the propagation of radio waves, since the usual Boltzmann 
distribution underestimates the excited level density dramatically.
The present theoretical work attempts to give a general, complete and detailed coverage 
of  the  basic  concepts  necessary  to  calculate  the  efficiency  for  the  scattering  of 
electromagnetic  waves  by  excited  atoms  without  referring  to  any  inconsistent  and 
misleading ad hoc concepts but using only elementary physical laws on a microscopic 
level and deriving the macroscopic quantities in a logical and deductive way.
A modification  of  the  theory to  a  time  dependent  formalism,  which  is  necessary for 
instance for ionospheric problems if one is interested in a time resolution shorter than a 
few hours,  should in  principle  be straightforward  to  accomplish  without  further  basic 
theoretical work.  
With regard to certain situations, it might also become unavoidable to consider inelastic 
collisions of electrons as an important mechanism affecting the scattering coefficient for 
radio  waves  due  to  the  related  production  rate  of  electrons  at  very  small  energies 
exceeding the one due to elastic collisions and enhancing therefore the recombination rate 
into  high  Rydberg  states  accordingly.   For  example,  strong  increases  in  the  rate  of 
excitation  of  discrete  atomic  transitions  by  electrons  are  observed  during  non-linear 
plasma  oscillations  in  the  ionosphere  induced  by  means  of  high  power  radio  waves 
(Smid, 1992a) and may in this way explain associated changes in the characteristics of the 
propagation of radio waves through the affected region.
As a further aspect, future work has to include the problem of the frequency- and angular 
redistribution of the radiation resonantly scattered by Stark shifted and -broadened levels 
in  the  presence  of  a  magnetic  field  and  the  task  of  determining  the  total  spatial 
interference wave field from the contributions of the individual atoms.  With this, one 
would then for instance be able to calculate  the exact frequency dependence of radio 
wave spectra backscattered from the ionosphere,  if  additionally the modulation of the 
wave by the non- linear interaction with the magnetized plasma is taken into account 
(Smid, 1992b).

In consideration of the addressed theoretical  aspects  and the numerical  results  of this 
paper, it appears to be possible that the concept of resonance scattering by atomic states 
can generally serve as a basis for a unified theory for the interaction and propagation of 
electromagnetic waves in arbitrary media, which may replace inconsistent and unphysical 
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ad hoc theories presently applied to corresponding problems. 
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Appendix A

Cross Sections and Decay Constants for Atomic Dipole Transitions

A.1  Transitions Between Bound States

The  physical  parameters  for  atomic  dipole  transitions  can  generally  be  obtained  by 
considering the power radiated by an oscillator whose dipole moment is given by the 
quantum mechanical overlap integral

                              ∞

‹r›i,k  :=  r0 . ∫ dρ  Ψi(ρ) .ρ .Ψk(ρ) (A.1.1)

                             0

where  Ψi and  Ψk  designate the normalized radial wave functions of the energetically 

lower and upper state respectively (where state k is characterized by the pair of principal 
quantum number  and  angular  momentum  (n,l)  and   i   by   (m,l±1))   and   ρ  is  a 
dimensionless distance parameter which is normalized to the  Bohr radius 

r0  =  h2/ ( 4π2me2)

     =  5.3 .10-9           [cm] ,             (A.1.2)

where h is Planck's constant, m the electron mass and e the elementary charge.

As  a  result  (Smid,  1987),  the  damping  constant  related  to  the  transition  with  the 
associated frequency  fi,k  is obtained as

Ai,k  =  16π4 .e2 .fi,k
3 /  3c3h  . ‹r›i,k

2 , (A.1.3)

where c is the velocity of light,
and the cross section for resonant absorption or scattering of radiation of frequency  f  is 
determined through  

σi,k(w)  =  2π5/2 .e2/h  . fi,k/c/(∆f)D  . ‹r›i,k
2  .H(a,w) , (A.1.4)

with

w  =  (f-fi,k)/(∆f)D (A.1.5)
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being the difference between the frequency of the radiation and the resonance frequency 
normalized to the Doppler width

(∆f)D  =  fi,k/c  .  √(2kT/M) , (A.1.6)

where k is the Boltzmann constant, T the temperature and M the mass of the radiating 
atoms (ions) which are assumed here to have a Maxwellian velocity distribution. 

The frequency dependence of the cross section is determined by the well known Voigt- 
function 

                                  ∞

H(a,w)  =  a/π  .  ∫  du  e-u2 / [(w-u)2+a2] ,                  (A.1.7)

                                 -∞

where 

a  =  Ai,k/ 4π /(∆f)D . (A.1.8)

In most cases of interest, a<<1,  so that  H(a,w) can be approximated by the pure Doppler 

line  profile  e-w2 .    Note  however  that   (A.1.7),  (A.1.8)   neglects  any  initial  level 
broadening of the individual atom, since it contains only the apparent ('natural') frequency 
broadening due to the finite duration  1/Ai,k  of the transition between the two sharp 
levels  involved   and  the  Doppler  broadening  caused  by  the  Maxwellian  velocity 
distribution of the atoms.
The case of an explicit  level broadening is discussed in Sects.2.3 and 2.5,  where the 
resonant cross section including collisional Stark broadening is derived.

Explicit  numerical  calculations show now that  for  degenerate  l-states  (which  can  be 
assumed  in  the  case  of  highly  excited  atoms),  the  dipole  integral  (A.1.1) depends 
primarily upon the principal quantum numbers, in the approximate form 

‹r›m,n  ≈ ‹r›m,m+1  . (fm,m+1/fm,n)1.5 . (m/(n-1))1.6 .             (A.1.9)

In the case of large m, the Rydberg formula yields the further approximation 

fm,m+1  =  f0 .[1/m2  -1/(m+1)2 ]  ≈

                   ≈  2f0/m3 ,             (A.1.10)
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with

f0  =  3.2898 . 1015  Hz ,           (A.1.11)

and the dipole integral for the mα-transition can be written as

‹r›m,m+1  ≈ r0/2 . m2 ,           (A.1.12)

so that Eq.(A.1.9) becomes (after substituting the explicit Rydberg formula for fm,n)

‹r›m,n  ≈  1.4 . r0
.  [ 1/m2 -1/n2 ]-1.5  . m-0.9 .(n-1)-1.6 .         (A.1.13)

With this, one obtains the numerical approximations

Am,n  ≈ 1.3 .109  .m-1.8 .(n-1)-3.2         [sec-1]        (m,n   >>1)           (A.1.14)

and

σm,n(w)  ≈ 5.1 .10-12 . [ 1/m2-1/n2 ]-3 .m-1.8 .(n-1)-3.2 .√(A/T).H(a,w)      [cm2]  ,

        (m,n  >>1) ,         (A.1.15)

where A is the atomic mass number (=M/MH with MH the mass of a hydrogen atom)  and 

T the temperature  in oK.

The summation of Eq.(A.1.14) over m yields the total decay probability for the level n

                   n-1

An  =   ∑Am,n          ;   (n≥2) .           (A.1.16)
                  m=1

which can be numerically approximated by 

A n  ≈ 1.1 .109  . (n-1)-3.6            [sec-1] ,           (A.1.17)

as it emerges from an explicit numerical evaluation of (A.1.16) with (A.1.14)  including a 
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correction for the contribution of higher  angular  momentum values (see Eq.(20)  and 
Appendix A.2, Eq.(A.2.10) and following) .

It  should  be  noted  that  the  dependence  on  the  angular  momentum quantum number, 
which has been neglected from Eq.(A.1.9)  onwards, might introduce an error up to about 
a  factor  2  for  the  absolute  values  of  Am,n and  σm,n as  obtained  by Eq.(A.1.14) and 

(A.1.15) (this  results  from numerical  calculations  of  the  dipole  integral  involving  the 
actual  wave  functions  Ψ(m,l±1) and Ψnl ).  The  relative  values  for  a  fixed  angular 

momentum, on the other hand, which determine the branching ratios into the different 
levels,  can be considered to be accurate  to  within a  few percent.  Even here,  one has 
nevertheless to exclude very high angular momenta, because the dipole integral turns out 
to 'collapse' to extremely small values if  l comes close in value to the principal quantum 
number m if m is large. Since those transitions contribute however only a small fraction 
to the sum of all possible ones (in particular in view of the fact that recombination tends 
to populate only the lowest angular momenta of a given level, see next Sect. A.2), the 
error introduced by this circumstance can be neglected for the present purpose.
Furthermore, the explicit numerical calculations show that even for the lowest quantum 
numbers (for which the approximations  (A.1.10) and (A.1.14)  are in principle not valid 
anymore) Eqs.(A.1.14) and  (A.1.17)  are reasonably good approximations to Am,n  , An 
and  σm,n . 
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A.2    Photoionization and Radiative Recombination

The concept outlined in Section A.1 can easily be extended to bound-free transitions by 
replacing  the  wave function  of  the  upper  state  in  Eq.(A.1.1)   by  a  continuum wave 
function of the energy  ε , i.e.

                                          ∞

‹r›nl(ε)  =  NB,F 
.r0 . ∫ dρ Ψnl(r) 

.ρ . [ cl
.Fl-1(ε,ρ) +Fl+1(ε,ρ) ]      ,        (A.2.1)

                                          0

where  Fl-1(ε,ρ)  and  Fl+1(ε,ρ)  are the regular Coulomb wave functions for the two 

angular  momenta  allowed  by  the  selection  rules  for  dipole  transitions  (  the  angular 
momentum quantum number l has now been explicitly included because of its greater 
importance for bound- free transitions (see Eq.(A.2.10)).  
Note that the dipole integral is evaluated with the sum of the two possible continuous 
wave functions which are related to the angular momentum l of the bound state by the l- 
selection  rule  for  dipole  transitions,  rather  than  by  calculating  the  dipole  integral 
separately for each l value and adding the results later.  This form is assumed here to 
make more sense for the present case of bound- free transitions, since it is not possible to 
define the angular momentum of a free electron uniquely before recombination into the 
bound state  nl  of a particular ion has taken place.  Reversely, the notion of an angular 
momentum for an electron is in principle meaningless after photoionization out of the 
atom has occurred (it should be noted that the two indicated methods for calculating the 
dipole integral  produce anyhow only insignificantly (for the present purpose) different 
results, which are within a factor of 2).

The factor

                    

cl  =  { 0  for  l=0   (A.2.2)

                    
1  for   l>0

takes the special situation for l=0 into account, where only one transition is allowed by 
the selection rule, 
and the dimensionless normalization constant  

NB,F  =  8.3  .10-6 (A.2.3) 

has to be applied here because the integral over  Fl(ε,r) can not be normalized separately 
like the wave functions for the bound states  Ψnl(r). It is determined from experimental 
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measurements of the photoionization cross section by comparing it with the unnormalized 
theoretical result . The latter is obtained by inserting (A.2.1) instead of (A.1.1) into Eq.
(A.1.4) and integrating over the atomic line profile H(a,w) with respect to w as (Smid, 
1987)

σnl
Ion(f(ε))  =  2π3 .e2/h  . √(M/ 2kT) . ‹r›nl

2(ε)  .NB,F , (A.2.4)

where  f(ε)  is  the  frequency  of  the  ionizing  radiation  which  is  associated  with  the 
continuum energy  ε through Eq.(24), Sect.2.1.

The cross section for radiative recombination is obtained from Eq.(A.2.4) by means of 
symmetry arguments, i.e.

σnl
Rec(ε)  =  σnl

Ion(f(ε)) (A.2.5)

(note that here and in the following formulae, the index  n  rather than the (numerically 
identical)  quantum  number  n  is  being  used  with  the  recombination  cross  section, 
indicating that it is strictly to be understood as the cross section for the (collisionfree) 
recombination into the 'pre-bound' state n from which then the decay into the actual level 
n occurs if collisions do not interfere during its lifetime 1/An

Rec (see Eq.(A.2.19)  and 
Section 2.1, Eq.(5) and following)).

Averaging over the angular momentum yields the cross section into the level n 

                                   n-1

σn
Rec(ε)  =  1/n . ∑  σnl

Rec(ε)       . (A.2.6)
                                     l=0

from which the total cross section for recombination of an electron of energy ε into all 
bound states is obtained as

                      ∞

σT
Rec(ε)  =   ∑  σn

Rec(ε)       . (A.2.7)
                              n=1

Explicit  numerical  calculations  of the recombination cross section involving the exact 
hydrogenic wave functions have been performed for continuum energies  ε = 10-8  to 4 
Rydberg   and bound states  n=1....1000  (Smid, 1987  and unpublished work).
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As a symmetry property, one observes that for any n,  σn
Rec(ε)  has its maximum value 

approximately at an energy 

εn  =  1/n2 , (A.2.8)

with εn  in units of  Rydberg ,  and that this peak cross section can be approximated by the 

power law

σn
Rec(εn)  ≈ 3.7 .10-17 . √(A/T)  . n2.4       [cm2] , (A.2.9)

where A is the ion mass number and T the ion temperature in  oK ( note that for other 
elements than hydrogen,  n has to be interpreted here as designating the effective quantum 
number   (i.e.  n=1 for  the  lowest  unoccupied  state  of  the  ion)  rather  than  the  actual 
quantum number).
The distribution over the different angular momenta is hereby such that the recombination 
cross section is only slowly decreasing with l for l=n0.75 but drops rapidly if l is greater 
than this,  i.e. one can approximately set  (see Eq.(A.2.6))

σnl
Rec(εn)  = { σnRec(εn) .n0.25   for  l≤n0.75

                                
 0           for  l>n0.75 ;        (A.2.10)

(note that those electrons which have recombined into the bound state  nl  are not able to 
decay directly into a lower lying energy level   m in the case  l>m because of the l-
selection  rule  for  dipole  transitions;   this  circumstance  together  with  (A.2.10)  leads 
directly to the correction factor for the transition matrix  Eq.(20) ,Sect.2.1).

If  ε<εn  ,  σn
Rec(ε)  turns out to be approximately constant with energy (only for n=1 

does one observe a dependence roughly  ~√ε if  ε<<1),  whereas for  ε>>εn  the cross 

section  decreases  rapidly  ~ ε-2.9.  The  transition  region  is  obviously  difficult  to 
approximate analytically. Since it occurs however only within a relatively narrow energy 
band, it  is sufficient for the present purpose to approximate the energy dependence of 
σn

Rec(ε)  for  fixed n by the schematic function

h(ε,εn)  =  { 1  for  ε≤2εn

                             
(ε/ (2εn))-2.9  for  ε>2εn

,           (A.2.11)

so that
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σn
Rec(ε)  =  σn

Rec(εn) . h(ε,εn) .           (A.2.12)

In order to obtain the cross section for a given energy instead of a given quantum number, 
one transforms the function  h  by means of Eq.(A.2.8) into

h(n,ε)  =  { 1  for  n≤√(2/ε)
                           

                     (n/ √(2/ε) )-5.8  for  n>√(2/ε) ,                  (A.2.13)

and gets thus the alternative relationship

σn
Rec(ε)  =  σnε

Rec(ε) . h(n,ε) ,           (A.2.14)

where

nε  =  1/√ε           (A.2.15)

is  the  inversion  of  Eq.(A.2.8)  for  continuous  energy  values   and   σnε
Rec(ε)  is  the 

corresponding  generalization  of  the  peak  cross  section  Eq.(A.2.7)  to  the  continuous 
quantum number  nε .

(It should be noted that if  h(ε,εn) (or  h(n,ε)) <<1 ,  the distribution of the recombination 

cross section over angular momentum turns out to be even more concentrated towards 
small l-values than given by the peak cross section scheme (A.2.10).  Since those cross 
sections are however much smaller, their contribution to the recombination rate into level 
n  is only of minor importance, so that  (A.2.10) can still be assumed to determine the 
angular momentum correction factor for the decay probability of the bound states  (Eq.
(20), Sect.2.1)).
By using Eq.(A.2.14) and evaluating Eq.(A.2.7) numerically, one obtains the total cross 
section for recombination of an electron of energy ε into all bound states as

σT
Rec(ε)  ≈ 5.4 .10-17  . √(A/T)  .ε-1.7 [cm2]     (ε≤2)           (A.2.16)

with  ε again in units of Rydberg (for energies ε>2, σT
Rec(ε) has to be taken identical to 

σn
Rec(εn)  (Eq.(A.2.9)) for n=1 ).

In the case of negligible Stark broadening of the bound levels (compared to their energy) , 
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i.e.  if   ηn
Rec=1 (see Sect.2.3,  Eq.(79)),  the related total  recombination frequency (see 

Sect.2.1, Eqs.(17) and (40)) becomes therewith numerically 

νT
Rec,0(ε)   =   Np .ve(ε) . σT

Rec(ε)  =

                        =   Np . ve(ε=1) . √ε . σT
Rec(ε)   ≈

                         ≈  1.2 .10-8 .Np 
. √(A/T) .ε-1.2 [sec-1]  ;   (ηn

Rec=1; ε≤2)    ,  (A.2.17)

where the plasma density  Np has to be taken in  [cm-3]  and the superscript 0 has been 
added  to  νT

Rec in  order  to  emphasize  that  this  quantity  describes  the  collisionfree 

recombination frequency into the 'pre-bound' state  n (for energies  ε>2, σT
Rec(ε) in the 

above equation has again to be replaced by σn
Rec(εn)  (Eq.(A.2.9)) for n=1 ).

The lifetime of the the 'pre-bound' state  n with regard to recombination into the actual 
bound  level  n  is  obtained  by  generalizing   Eq.(A.1.3) to  bound-  free  transitions  by 
multiplying the expression with the normalizing factor NB,F  (Eq.(A.2.3)) (one has to take 
the same factor here as for the cross section because both quantities depend on the square 
of the dipole integral (from which the need of a normalization arises ;  see below Eq.
(A.2.3)).
One can therefore write

Anl
Rec(ε)  =  [ 16π4 .e2 .fnl,ε

3 /  3c3h ] .‹r›nl
2(ε)  .NB,F ,         (A.2.18)

which  (for those angular momenta where the recombination cross section Eq.(A.2.10) is 
different form zero),  can be numerically approximated by

An
Rec   = 7 .104  .n-3.4           [sec-1] .           (A.2.19)

Note that the recombinative decay constant depends only on the bound state n but not the 

continuous energy ε, which is due to the fact that the energy dependences of  ‹r›nl
2(ε) 

and  fnl,ε
3  cancel almost exactly (see Eq.(A.2.11)).

63



Appendix B

Cross Sections and Collision Frequencies for Energy Transfer by Electron-Electron 
(Coulomb-) Scattering

For  particles  of  arbitrary  energy,  the  calculation  of  the  cross  section  for  Coulomb 
scattering represents a difficult problem in the laboratory system, which cannot always be 
solved in closed form or at least leads to complex analytical expressions because of the 
complicated formula which connects the scattering angles in the laboratory and center of 
mass system (Landau and Lifshitz, 1982).
With the present problem, however, a great simplification is introduced by the fact that 
one is primarily interested in electrons which have an energy which is small compared to 
the  energy   εp  of  the  bulk  of  the  plasma  electrons.   In  this  case,  the  well  known 

Rutherford  formula  gives  to  a  good  approximation  the  differential  scattering  cross 
section, since it just holds for one particle initially resting.
With   εp  being  the  dimensionless  plasma  energy  (energy  of  the  incident  electron) 
normalized to  E0 = 1 Rydberg (in cgs- units) and θ  the scattering angle in the center of 
mass system, the differential cross section for scattering with a low energy electron can 
thus be written as

dσc(εp,θ)/dΩ  =  e4 / [ 16.E0
2 . εp

2 . sin4(θ/2) ] , (B.1)

where  e  is the elementary charge ( in cgs- units) and 

dΩ  =  2π  sinθ  dθ . (B.2)

Even energy changes very small compared to the plasma energy  εp  are fully taken into 

account by Eq.(B.1), because those can be primarily attributed to small angle scattering of 
the bulk of higher energetic electrons rather than large angle collisions of the few low 
energetic electrons.
This is due to the fact that the ratio of the cross section for the latter possibility to the 
cross section for the former increases more slowly for ∆ε→0  ( ~ ∆ε-1.5 ) (see Eq.(B.6) ) 
than the number of electrons within the energy range  0...∆ε  decreases (~ ∆ε1.7, taking 
the consistent electron distribution function into account  (Figs.3,  4,  5).

The energy change  ∆ε  is generally related to the scattering angle θ  through the energy 
transfer function for particles of equal mass (Landau and Lifshitz, 1982)

∆ε/εp   =   sin2(θ/2) .    (B.3)

If one would be interested in the average energy transfer ( i.e. scattering about all angles), 
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the related cross section would be obtained by integrating  ( from  θ =0....π) the product 
of the differential cross section Eq.(B.1),  the energy transfer function Eq.(B.3)  and a 
further geometrical weighting function 

f(θ)   = 1/π  . sin(θ/2) ,    (B.4)

which takes care of the sphericity of the scattering potential (Smid, 1987).
In the present case, however, one is just interested in those small energy transfers which 
the function (B.3) suppresses, so that only  f(θ) has to be multiplied to the differential 
cross section. By doing this, changing to the differential (see Eq.(B.3))

d(∆ε)   =   dθ  .εp . sin(θ/2)  .cos(θ/2)    (B.5)

and subsequently to ∆ε  by means of Eq.(B.3), one gets for the differential cross section 
with regard to a given energy change

dσf
c(εp,∆ε)/d(∆ε)  =   σ0

c /2  . εp
-1.5  .(∆ε)-1.5 ,    (B.6)

where

 σ0
c  =  5.6  .10-17        [cm2]    (B.7)

and   εp  and  ∆ε  are in energy units of  1 Rydberg.

Assuming that the energy of an electron within the continuum energy range  εi-1, εi  can 

be represented by

εi    =  (εi-1 + εi)/2 ,    (B.8)

the cross section for scattering from within this range into the given interval  εk-1,  εk  is 

therefore

                                          εk

 σi,k
c   =    σ0

c /2  . εp
-1.5 . ∫ dε  (±ε −+εi)-1.5        =

                                              εk-1
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           =   σ0
c  . εp

-1.5  . [ ±1/√(±εk-1
−

+εi)    −+ 1/√(±εk −+εi) ] ,    (B.9)

where the upper sign holds for k>i and the lower for k<i  (the exclusion of k=i means that 
scattering within the interval   εk-1, εk  itself is neglected).

The  cross  section  for  collisional  loss  out  of  the  interval   εk-1,  εk    into  the  whole 
numerically available energy range  0....εM   is given by

                        M                

σk,L
c  =   ∑ σk,i

c             =            
                       i=1           
                        ≠k

                                                εk-1                              εM

                  =    σ0
c /2  . εp

-1.5 . [ ∫ dε  (εk −ε)-1.5    +  ∫ dε  (ε −εk)-1.5 ]  ,  (B.10)

                                                     0                                  εk

where, in consistency with Eq.(B.8),

εk    =  (εk-1 + εk)/2 .  (B.11)

Evaluation of the integral yields 

σk,L
c
   =   σ0

c  . εp
-1.5  . [ 2√2/√(∆εk)   - 1/√εk  -1/√(εM -εk ) ]  (B.12)

with ∆εk  as defined by Eq.(41).

Furthermore,  the cross section for collisional  ionization from the bound level  n (with 
energy  -εn ) into the continuum interval  εk-1, εk  is

                                                 εk                           

    σn,k
c   =    σ0

c /2  . εp
-1.5 .  ∫dε   (ε +εn)-1.5               =

                                              εk-1                                     

           =    σ0
c  . εp

-1.5  . [1/√(εk-1 + εn)    - 1/√(εk + εn)   ] .  (B.13)
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It has been assumed here that the energy  -εn , which is a quantum mechanical eigenvalue, 
is  identical  with  the  classical  energy  of  the  electron  in  its  orbit,  which  is  at  least 
approximately the case.
The  cross  section  for  collisional  ionization  into  the  whole  (numerically)  available 
continuum energy range  0...εM  is obtained from Eq.(B.13)  by setting  εk-1 = 0  and   εk 
= εM  ,i.e.

 σn
c  =   σ0

c  . εp
-1.5  . [1/√εn    - 1/√(εM + εn) ]   .  (B.14)

In the case εM >>εn ,this reduces to the simple expression 

σn
c  =   σ0

c  . εp
-1.5  . n .  (B.15)

The collision frequency for elastic  scattering is  generally related to the corresponding 
cross section by

ν c  =  Np .ve(εp) .σ c   =

           =  Np . 2.2.108  . √εp .σ c        [sec-1] ,  (B.16)

if  εp  is in units of Rydberg, Np in  [cm-3]  and σ c  in  [cm2] .

From the various cross sections derived in this chapter one gets thus

νi,k
c     =   ν0

c  . [ ±1/√(±εk-1
−

+εi)    −+ 1/√(±εk −+εi) ]  . δi  (B.17)

νk,L
c    =   ν0

c  . [ 2√2/√(∆εk)   - 1/√εk  -1/√(εM -εk ) ]  . δk  (B.18)

νn,k
c    =   ν0

c  .  [1/√(εk-1 + εn)    - 1/√(εk + εn)   ]              (B.19)

νn
c    =   ν0

c  . [1/√εn    - 1/√(εM + εn) ]         ≈

               ≈  ν0
c  .n       if  εn <<εM  (energy of excited state small compared to

                                                                            the maximum numerical continuum energy)  (B.20)
νn,k

c   =  νn,k
c    (B.21)

νn
c      =  νn

c   ,  (B.22)

where

 ν0
c   =   1.2.10-8  .Np

 /εp         [sec-1] ,  (B.23)
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with  Np in [cm-3] and εp  in units of Rydberg,    and

δk  =  (Np
  - Ne,k )  / Np  (B.24)

is the fraction of electrons outside the energy interval  εk-1, εk  (see Sect.2.2, Eq.(32)) in 

consistency with the assumption that scattering within this interval itself is neglected (see 
below Eq.(B.9)) .

From experimental results, it is evident (Smid, 1987) that the cross section for electron 
impact ionization of neutrals in the ground state by electrons with an energy comparable 
to the ground state energy is about 4 orders of magnitude smaller as would follow from 
Eq.(B.14) (at least is this true for ionospheric conditions).
For this reason, Eqs.(B.19)-(B.22) have been additionally multiplied by the factor

ηn
c  =  10-4 . Min(104, εp/εn ) .  (B.25)

It should be noted that for the present purpose this correction is however only of minor 
relevance, since electron collisions are only important for large n for which ηn

c is close to 
1 (see Sect.3.3).

With regard to the application of the expressions derived in this chapter to the balance 
equation in Sect.2.2 , one should again realize that in principle they are only strictly valid 
if the energy transfer is small compared to the bulk plasma energy  εp . The numerical 

error introduced by this inconsistency for the highest energies of the electron spectrum is 
however insignificant for the present purpose, because the high energy bulk of electrons 
serves only as a background 'pool' for the production of electrons at smaller energies by 
means of elastic scattering and errors in the assumption for the form of the differential 
scattering cross section for those energies will more or less average out (this is also the 
justification for choosing the low numerical resolution of the energy grid for the electron 
spectrum at high energies (see Sect.3.1) ).
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Scattering of Radio Waves by High Atomic Rydberg States

Fig.1:

Scheme illustrating the coupling between the free electron spectrum and the atomic level population

in detailed balance equilibrium
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Fig.2:

Effective optical  depth for plane-wave radiation of finite field strength (intensity)  in an absorbing

medium over a pathlength characterized by the field strength independent optical depth depth , for various

values of the ratio of the initial wave field strength to the effective plasma fluctuation field.
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Fig.3:

Free  electron distribution function  (thick  solid  step  function,  right  ordinate,  lower  abscissa)  for  a

plasma density Np=10
5
cm

-3
, an average electron energy of ε = 0.5 Ry , an ion temperature T=300 K and

an ion mass number A=32 (the specification of the solar radiation flux is without any significance for the

free electron spectrum and can be ignored here). The dashed step function gives the result when all elastic

collisions  are  neglected,  that  is,  only  the  primary  production  rate  and  the  recombination  frequency

νT,k
Rec,0

(thin  solid  curve,  left  ordinate)  are  hypothetically  assumed  to  determine  the  spectrum.  The

dashed-dotted line shows the recombination constant An
Rec as a function of the atomic level number n

(left ordinate, upper abscissa) and the dashed line the related elastic collision frequency νn
c
. The point of

intersection  of  the  two  lines  (at  n=n*,  Eq.(31))  separates  the  energy  region  where  recombination  is

unaffected by collisions (the quantum state and energy relate to each other through ε =1/n2) from the

energy range where collisions interfere with the recombination process (only in the latter regime does fe(ε)

depend on the total plasma density Np).

See Fig.4 and Fig.5 for the corresponding results for plasma densities Np=104cm-3 and Np=106cm-3

respectively.
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Fig.4:

Free  electron distribution function  (thick  solid  step  function,  right  ordinate,  lower  abscissa)  for  a

plasma density Np=10
4
cm

-3
, an average electron energy of ε = 0.5 Ry , an ion temperature T=300 K and

an ion mass number A=32 (the specification of the solar radiation flux is without any significance for the

free electron spectrum and can be ignored here). The dashed step function gives the result when all elastic

collisions  are  neglected,  that  is,  only  the  primary  production  rate  and  the  recombination  frequency

νT,k
Rec,0

(thin  solid  curve,  left  ordinate)  are  hypothetically  assumed  to  determine  the  spectrum.  The

dashed-dotted line shows the recombination constant An
Rec as a function of the atomic level number n

(left ordinate, upper abscissa) and the dashed line the related elastic collision frequency νn
c
. The point of

intersection  of  the  two  lines  (at  n=n*,  Eq.(31))  separates  the  energy  region  where  recombination  is

unaffected by collisions (the quantum state and energy relate to each other through ε =1/n2) from the

energy range where collisions interfere with the recombination process (only in the latter regime does fe(ε)

depend on the total plasma density Np).

See Fig.3 and Fig.5 for the corresponding results for plasma densities Np=105cm-3 and Np=106cm-3

respectively.
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Fig.5:

Free  electron distribution function  (thick  solid  step  function,  right  ordinate,  lower  abscissa)  for  a

plasma density Np=10
6
cm

-3
, an average electron energy of ε = 0.5 Ry , an ion temperature T=300 K and

an ion mass number A=32 (the specification of the solar radiation flux is without any significance for the

free electron spectrum and can be ignored here). The dashed step function gives the result when all elastic

collisions  are  neglected,  that  is,  only  the  primary  production  rate  and  the  recombination  frequency

νT,k
Rec,0

(thin  solid  curve,  left  ordinate)  are  hypothetically  assumed  to  determine  the  spectrum.  The

dashed-dotted line shows the recombination constant An
Rec as a function of the atomic level number n

(left ordinate, upper abscissa) and the dashed line the related elastic collision frequency νn
c
. The point of

intersection  of  the  two  lines  (at  n=n*,  Eq.(31))  separates  the  energy  region  where  recombination  is

unaffected by collisions (the quantum state and energy relate to each other through ε =1/n2) from the

energy range where collisions interfere with the recombination process (only in the latter regime does fe(ε)

depend on the total plasma density Np).

See Fig.3 and Fig.4 for the corresponding results for plasma densities Np=105cm-3 and Np=104cm-3

respectively.
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Fig.6:

Density of atoms in excited states (thick solid curve, left ordinate) as a function of the principal quantum

number n (lower abscissa) for a plasma density Np=10
5
cm

-3
. The thin solid curve gives the production

rate  qn (left  ordinate  to  be  multiplied by 10
5
)  with the  close  dashed-dotted curve  showing the  initial

recombinative production rate qn
Rec (i.e. neglecting the cascading rate qn

casc). The total loss frequency for

each  level  is  given  by  the  sum of  the  level  decay  constant  An  (long-dashed  curve),  the  collisional

ionization frequency (dashed curve) and the photoionization frequency (dotted curve) where the latter

corresponds to an average (quiet conditions) solar flux at the earth (Fsol=1). The upper abscissa shows the

frequency of the n-alpha transition for the quantum number n and gives an approximate idea which levels

are responsible for scattering an electromagnetic wave of a certain frequency.

See Fig.7 and Fig.8 for the corresponding results for plasma densities Np=10
4
cm

-3
 and Np=10

6
cm

-3

respectively.
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Fig.7:

Density of atoms in excited states (thick solid curve, left ordinate) as a function of the principal quantum

number n (lower abscissa) for a plasma density Np=10
4
cm

-3
. The thin solid curve gives the production

rate  qn (left  ordinate  to  be  multiplied by 10
5
)  with the  close  dashed-dotted curve  showing the  initial

recombinative production rate qn
Rec (i.e. neglecting the cascading rate qn

casc). The total loss frequency for

each  level  is  given  by  the  sum of  the  level  decay  constant  An  (long-dashed  curve),  the  collisional

ionization frequency (dashed curve) and the photoionization frequency (dotted curve) where the latter

corresponds to an average (quiet conditions) solar flux at the earth (Fsol=1). The upper abscissa shows the

frequency of the n-alpha transition for the quantum number n and gives an approximate idea which levels

are responsible for scattering an electromagnetic wave of a certain frequency.

See Fig.6 and Fig.8 for the corresponding results for plasma densities Np=10
5
cm

-3
 and Np=10

6
cm

-3

respectively.
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Fig.8:

Density of atoms in excited states (thick solid curve, left ordinate) as a function of the principal quantum

number n (lower abscissa) for a plasma density Np=10
6
cm

-3
. The thin solid curve gives the production

rate  qn (left  ordinate  to  be  multiplied by 10
5
)  with the  close  dashed-dotted curve  showing the  initial

recombinative production rate qn
Rec (i.e. neglecting the cascading rate qn

casc). The total loss frequency for

each  level  is  given  by  the  sum of  the  level  decay  constant  An  (long-dashed  curve),  the  collisional

ionization frequency (dashed curve) and the photoionization frequency (dotted curve) where the latter

corresponds to an average (quiet conditions) solar flux at the earth (Fsol=1). The upper abscissa shows the

frequency of the n-alpha transition for the quantum number n and gives an approximate idea which levels

are responsible for scattering an electromagnetic wave of a certain frequency.

See Fig.6 and Fig.7 for the corresponding results for plasma densities Np=10
5
cm

-3
 and Np=10

4
cm

-3

respectively.
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Fig.9:

Density of atoms in excited states (thick solid curve, left ordinate) as a function of the principal quantum

number n (lower abscissa) for a plasma density Np=10
5
cm

-3
. The thin solid curve gives the production

rate  qn (left  ordinate  to  be  multiplied by 10
5
)  with the  close  dashed-dotted curve  showing the  initial

recombinative production rate qn
Rec (i.e. neglecting the cascading rate qn

casc). The total loss frequency is

given by the sum of the level decay constant An (long-dashed curve), the collisional ionization frequency

(dashed  curve)  and  the  photoionization  frequency  (dotted  curve)  where  the  latter  corresponds to  an

enhanced solar radio flux as appropriate for a strong ('Type IV') solar burst (see Fig.10) (Fsol=1). (See

Fig.6 for normal solar flux conditions, The upper abscissa shows the frequency of the n-alpha transition for

the  quantum number  n  and gives an  approximate  idea  which levels are  responsible  for  scattering an

electromagnetic wave of a certain frequency.

See Fig.23 for the resulting scattering coefficient.
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Fig.10:

Measured solar radio flux spectra for quiet conditions and during solar storm (burst) events (the flux for

Jovian bursts and the supernova remnant Cassiopeia A is shown additionally) (after Boischot, A., Solar

radio astronomy, in Solar  Physics,  edited by  J.N. Xanthakis,  pp.  465-481,  Wiley  Interscience,  1967;

Copyright John Wiley and Sons Ltd., reproduced with permission).
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Fig.11:

Theoretical  ionospheric  scattering  coefficient  (left  ordinate)  due  to  highly  excited  atomic  states

(corresponding to the level population in Fig.7, i.e. for a plasma density of Np=10
4
cm

-3
) for radio waves

with frequencies from 820 KHz to 1.9 GHz (lower abscissa).  The thick short  dashed curve  gives the

atomic  (incoherent)  coefficient,  whereas the  thick solid  curve  includes an enhancement  due  to  phase

coherent ('specular') scattering. The thin solid curve shows the broadening of the n-alpha lines in units of

[Hz] (right ordinate) as a function of the level number n (upper abscissa) which relates to the frequency

scale through f=f0*[1/n
2
-1/(n+1)

2
] with f0=3.29*10

15
 Hz. The points of intersection of this curve with the

lines for the frequency separation of two neighbouring levels (dashed-dotted) and the frequency separation

of two neighbouring lines (nα, (n+1)α) (long-dashed) determine the 3 different regions for the scattering

coefficient

See Fig.12 and Fig.13 for the corresponding results for plasma densities Np=10
5
cm

-3
 and Np=10

6
cm

-3

respectively.
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Fig.12:

Theoretical  ionospheric  scattering  coefficient  (left  ordinate)  due  to  highly  excited  atomic  states

(corresponding to the level population in Fig.6, i.e. for a plasma density of Np=10
5
cm

-3
) for radio waves

with frequencies from 820 KHz to 1.9 GHz (lower abscissa).  The thick short  dashed curve  gives the

atomic  (incoherent)  coefficient,  whereas the  thick solid  curve  includes an enhancement  due  to  phase

coherent ('specular') scattering. The thin solid curve shows the broadening of the n-alpha lines in units of

[Hz] (right ordinate) as a function of the level number n (upper abscissa) which relates to the frequency

scale through f=f0*[1/n
2
-1/(n+1)

2
] with f0=3.29*10

15
 Hz. The points of intersection of this curve with the

lines for the frequency separation of two neighbouring levels (dashed-dotted) and the frequency separation

of two neighbouring lines (nα, (n+1)α) (long-dashed) determine the 3 different regions for the scattering

coefficient.

The result shows good agreement with experimentally obtained values (see Fig.20; units can be compared

directly).

See Fig.11 and Fig.13 for the corresponding results for plasma densities Np=10
4
cm

-3
 and Np=10

6
cm

-3

respectively.
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Fig.13:

Theoretical  ionospheric  scattering  coefficient  (left  ordinate)  due  to  highly  excited  atomic  states

(corresponding to the level population in Fig.8, i.e. for a plasma density of Np=10
6
cm

-3
) for radio waves

with frequencies from 820 KHz to 1.9 GHz (lower abscissa).  The thick short  dashed curve  gives the

atomic  (incoherent)  coefficient,  whereas the  thick solid  curve  includes an enhancement  due  to  phase

coherent ('specular') scattering. The thin solid curve shows the broadening of the n-alpha lines in units of

[Hz] (right ordinate) as a function of the level number n (upper abscissa) which relates to the frequency

scale through f=f0*[1/n
2
-1/(n+1)

2
] with f0=3.29*10

15
 Hz. The points of intersection of this curve with the

lines for the frequency separation of two neighbouring levels (dashed-dotted) and the frequency separation

of two neighbouring lines (nα, (n+1)α) (long-dashed) determine the 3 different regions for the scattering

coefficient.

See Fig.11 and Fig.12 for the corresponding results for plasma densities Np=10
4
cm

-3
 and Np=10

5
cm

-3

respectively.
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Fig.14:

Theoretical scattering coefficient between 900 and 1000 MHz for a plasma density of Np=10
4
cm

-3
 (κ(f)

and κ0(f) coincide).

See Fig.15 for the corresponding result for a plasma density Np=10
5
cm

-3
.
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Fig.15:

Theoretical  scattering coefficient  between 900 and 1000 MHz for  a  plasma density of  Np=10
5
cm

-3

(solid curve: κ(f), dashed curve: κ0(f)).

See Fig.14 for the corresponding result for a plasma density Np=10
4
cm

-3
.
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Fig.16:

Same  as  Fig.12,  but  showing  only  the  contribution  due  to  transitions  between  neighboring  levels

(nα-transitions).
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Fig.17:

Effective density Neff of scattering atoms (thick solid curve, left ordinate) as a function of radar frequency

f (lower abscissa) resulting from the  atomic scattering coefficient  κ0(f) in Fig.11) (Np=10
4
cm

-3) .  For

comparison, the thin solid curve shows the density of excited atoms Nn as a function of the level number n

(upper abscissa). The dashed curve gives the ratio δ(f) of the radar wavelength to the average distance of

scattering atoms related to Neff (right ordinate) (see Eq.110). The quantity 1+δ
2
(f) transforms κ0(f) into

κ(f) in Fig.11.

See Fig.18 and Fig.19 for the corresponding results for plasma densities Np=10
5
cm

-3
 and Np=10

6
cm

-3

respectively.
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Fig.18:

Effective density Neff of scattering atoms (thick solid curve, left ordinate) as a function of radar frequency

f (lower abscissa) resulting from the atomic scattering coefficient  κ0(f) in Fig.12) (Np=10
5
cm

-3) .  For

comparison, the thin solid curve shows the density of excited atoms Nn as a function of the level number n

(upper abscissa). The dashed curve gives the ratio δ(f) of the radar wavelength to the average distance of

scattering atoms related to Neff (right ordinate) (see Eq.110). The quantity 1+δ
2
(f) transforms κ0(f) into

κ(f) in Fig.11.

See Fig.17 and Fig.19 for the corresponding results for plasma densities Np=10
4
cm

-3
 and Np=10

6
cm

-3

respectively.
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Fig.19:

Effective density Neff of scattering atoms (thick solid curve, left ordinate) as a function of radar frequency

f (lower abscissa) resulting from the atomic scattering coefficient  κ0(f) in Fig.13) (Np=10
6
cm

-3) .  For

comparison, the thin solid curve shows the density of excited atoms Nn as a function of the level number n

(upper abscissa). The dashed curve gives the ratio δ(f) of the radar wavelength to the average distance of

scattering atoms related to Neff (right ordinate) (see Eq.110). The quantity 1+δ
2
(f) transforms κ0(f) into

κ(f) in Fig.11.

See Fig.17 and Fig.18 for the corresponding results for plasma densities Np=10
4
cm

-3
 and Np=10

5
cm

-3

respectively.
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Fig.20:

Experimental  estimate of the scattering coefficient  as a function of radar frequency for the auroral

ionospheric region (after Moorcroft, D.R., Estimates of absolute scattering coefficients of radar aurora,

J.Geophys.Res.  92,  8723-8732,  1987;  Copyright  American  Geophysical  Union,  reproduced  with

permission).
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Fig.21:

Radio astronomical measurement of the H157a - (1.6832 GHz) line profile emitted from the Orion nebula

(after Pankonin (1980), p.121).

See Fig.22 for the corresponding theoretical profile.
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Fig.22:

Theoretical H157a- line profile due to Stark broadening in a plasma of density Np=2
.
10

3
cm

-3
.

See Fig.21 for the corresponding experimental profile.



Scattering of Radio Waves by High Atomic Rydberg States

Fig.23:

Scattering coefficient for a plasma density Np=10
5
cm

-3
 and a solar radio flux corresponding to a strong

('Type IV', see Fig.10) solar burst (Fsol
Burst=1; compare to the quiet conditions (Fsol

Burst=0) of Fig.12) .

See Fig.24 for the corresponding result for a plasma density Np=10
4
cm

-3
.
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Fig.24:

Scattering coefficient for a plasma density Np=10
4
cm

-3
 and a solar radio flux corresponding to a strong

('Type IV', see Fig.10) solar burst (Fsol
Burst=1; compare to the quiet conditions (Fsol

Burst=0) of Fig.11) .

See Fig.23 for the corresponding result for a plasma density Np=10
4
cm

-3
.
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Fig.25:

Experimental measurements of the enhancement of the solar radio flux at various frequencies during a

strong solar burst and the simultaneous fading of a short wave signal transmitted over the ionosphere (after

Unsöld (1955), p.744).
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Fig.26:

Scattering coefficient for a plasma density Np=10
5
cm

-3
 and quiet solar conditions (that is, corresponding

to Fig.12) but an additional (artificial) radio flux at 35 GHz with a field strength of 0.2 V/m.

See Fig.27 for the corresponding atomic level population..
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Fig.27:

Reduction of the  level  population  Nn (thin solid  curve),  left  ordinate)  for  states n=300 due  to the

ionizing microwave flux considered for Fig.26 and the related decrease of the effective density Neff(f)

(thick solid curve) (the small scale variation of Nn for n=300 is not real but a numerical effect) (compare

to the undisturbed case shown in Fig.18 which also gives a full explanation of the curves and scales).
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